Carbazole-endcapped Spiro[fluorene-9,9′-xanthene] with Large Steric Hindrance as Hole-transporting Host for Heavily-doped and High Performance OLEDs

2015 ◽  
Vol 33 (8) ◽  
pp. 955-960 ◽  
Author(s):  
Xianghua Zhao ◽  
Yukun Wu ◽  
Nannan Shi ◽  
Xiaoyu Li ◽  
Yi Zhao ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1751
Author(s):  
Inga Ermanova ◽  
Narges Yaghoobi Nia ◽  
Enrico Lamanna ◽  
Elisabetta Di Bartolomeo ◽  
Evgeny Kolesnikov ◽  
...  

In this paper, we demonstrate the high potentialities of pristine single-cation and mixed cation/anion perovskite solar cells (PSC) fabricated by sequential method deposition in p-i-n planar architecture (ITO/NiOX/Perovskite/PCBM/BCP/Ag) in ambient conditions. We applied the crystal engineering approach for perovskite deposition to control the quality and crystallinity of the light-harvesting film. The formation of a full converted and uniform perovskite absorber layer from poriferous pre-film on a planar hole transporting layer (HTL) is one of the crucial factors for the fabrication of high-performance PSCs. We show that the in-air sequential deposited MAPbI3-based PSCs on planar nickel oxide (NiOX) permitted to obtain a Power Conversion Efficiency (PCE) exceeding 14% while the (FA,MA,Cs)Pb(I,Br)3-based PSC achieved 15.6%. In this paper we also compared the influence of transporting layers on the cell performance by testing material depositions quantity and thickness (for hole transporting layer), and conditions of deposition processes (for electron transporting layer). Moreover, we optimized second step of perovskite deposition by varying the dipping time of substrates into the MA(I,Br) solution. We have shown that the layer by layer deposition of the NiOx is the key point to improve the efficiency for inverted perovskite solar cell out of glove-box using sequential deposition method, increasing the relative efficiency of +26% with respect to reference cells.


2021 ◽  
Author(s):  
Kun-Mu Lee ◽  
Jui-Yu Yang ◽  
Ping-Sheng Lai ◽  
Ke-Jyun Luo ◽  
Ting Yu Yang ◽  
...  

A new cyclopentadithiophene (CPDT)-based organic small molecule serves as an efficient dopant-free hole transporting material (HTM) for perovskite solar cells (PSCs). Upon incorporation of two carbazole groups, the resulting CPDT-based...


2021 ◽  
Vol 192 ◽  
pp. 109398
Author(s):  
Guan-Yu Ding ◽  
Chun-Xiu Zang ◽  
Han Zhang ◽  
Zhong-Min Su ◽  
Guang-Fu Li ◽  
...  

Solar Energy ◽  
2021 ◽  
Vol 226 ◽  
pp. 501-512
Author(s):  
Gurulakshmi Maddala ◽  
Ramesh Gade ◽  
Jakeer Ahemed ◽  
Susmitha Kalvapalli ◽  
Narendra Babu Simhachalam ◽  
...  

2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  

2017 ◽  
Vol 5 (37) ◽  
pp. 9680-9686 ◽  
Author(s):  
Feng Peng ◽  
Na Li ◽  
Lei Ying ◽  
Wenkai Zhong ◽  
Ting Guo ◽  
...  

We developed a series of high-performance blue light-emitting polymers that contain hole-transport moieties comprising carbazole or triphenylamine substituents in the side chains of random copolymer poly(fluorene-co-dibenzothiophene-S,S-dioxide) (PFSO).


2016 ◽  
Vol 4 (29) ◽  
pp. 11307-11316 ◽  
Author(s):  
Minwoo Park ◽  
Joon-Suh Park ◽  
Il Ki Han ◽  
Jin Young Oh

By incorporating long P3HT nanofibrils as a hole transporting layer, high-performance, air-stable and flexible perovskite solar cells with a large active area (1 cm2) have been realized with an excellent power conversion efficiency of 13.12%.


Sign in / Sign up

Export Citation Format

Share Document