scholarly journals Synthesis, Molecular Docking, and Preliminary Evaluation of 2‐(1,2,3‐Triazoyl)benzaldehydes As Multifunctional Agents for the Treatment of Alzheimer's Disease

ChemMedChem ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. 610-622 ◽  
Author(s):  
Gabriel P. Costa ◽  
Rodolfo S. M. Baldinotti ◽  
Mariana G. Fronza ◽  
José Edmilson R. Nascimento ◽  
Ítalo F. C. Dias ◽  
...  
MedChemComm ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 1018-1026 ◽  
Author(s):  
Oya Unsal-Tan ◽  
Tuba Tüylü Küçükkılınç ◽  
Beyza Ayazgök ◽  
Ayla Balkan ◽  
Keriman Ozadali-Sari

A novel series of 2-pyrazoline derivatives were designed, synthesized, and evaluated for cholinesterase (ChE) inhibitory, Aβ anti-aggregating and neuroprotective activities.


2019 ◽  
Vol 13 ◽  
pp. 117906951986618 ◽  
Author(s):  
Suresh Kumar ◽  
Shivani Kumar ◽  
Heera Ram

Amyloidogenesis is the process in which amyloid beta (Aβ) peptide aggregation results in plaque formation in central nervous system (CNS) are associated with many neurological diseases such as Alzheimer’s disease. The peptide aggregation initiated from peptide monomers results in formation of dimers, tetramers, fibrils, and protofibrils. The ability of allicin, a lipid-soluble volatile organosulfur biological compound, present in freshly crushed garlic ( Allium sativum L.) to inhibit fibril formation by the Aβ peptide in vitro was investigated in the present study. Inhibition of fibrillogenesis was measured by a Thioflavin T (ThT) fluorescence assay and visualized by transmission electron microscopy (TEM). The molecular interaction between allicin and Aβ peptide was also demonstrated by in silico studies. The results show that allicin strongly inhibited Aβ fibrils by 97% at 300 µM, compared with control (Aβ only) ( P < .001). These results were further validated by visual of fibril formation by transmission microscopy and molecular interaction of amyloid peptide with allicin by molecular docking. Aβ forms favourable hydrophobic interaction with Ile32, Met35, Val36, and Val39, and oxygen of allicin forms hydrogen bond with the amino acid residue Lys28. Allicin anti-amyloidogenic property suggests that this naturally occurring compound may have potential to ameliorate and prevent Alzheimer’s disease.


Author(s):  
Punabaka Jyothi ◽  
Kuna Yellamma

Objective: Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms, is biochemically characterized by a significant decrease in the brain neurotransmitter Acetylcholine (ACh).Methods: In the present insilico study, six plant bioactive compounds namely Harmol, Vasicine, Harmaline, Harmine, Harmane and Harmalol (from P. Nigellastrum Bunge) were analyzed for their inhibitory role on AChE (Acetylcholinesterase) and BChE (Butyrylcholinesterase) activity by applying the molecular docking studies. Other parameters viz. determination of molecular interaction-based binding affinity values, protein-ligand interactions, Lipinski rule of five, functional properties and biological activities for the above compounds were also calculated by employing the appropriate bioinformatics tools.Results: The results of docking analysis clearly showed that Harmalol has highest binding affinity with AChE (-8.6 kcal/mole) and BChE (-8.0 kcal/mole) but it does not qualified the enzyme inhibitory activity, since it was exerted, and also has least percentage activity on AD and neurodegenerative disease. Whereas, the Harmine has been second qualified binding affinity (-8.4 kcal/mol) and first in other parameters when compared with Harmalol.Conclusion: Based on docking results and other parameters conducted, we are concluding that Harmine is the best compound for further studies to treat AD.Keywords: Alzheimer's disease (AD), Acetylcholinesterase, Butyrylcholinesterase, Lead Molecules


Sign in / Sign up

Export Citation Format

Share Document