Characterization of bone marrow T cells in monoclonal gammopathy of undetermined significance, multiple myeloma, and plasma cell leukemia demonstrates increased infiltration by cytotoxic/Th1 T cells demonstrating a squed TCR-Vβ repertoire

Cancer ◽  
2006 ◽  
Vol 106 (6) ◽  
pp. 1296-1305 ◽  
Author(s):  
Martin Pérez-Andres ◽  
Julia Almeida ◽  
Marta Martin-Ayuso ◽  
Maria Jesus Moro ◽  
Guillermo Martin-Nuñez ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5083-5083
Author(s):  
Mehran S. Neshat ◽  
Haiming Chen ◽  
Melinda S. Gordon ◽  
James R. Berenson ◽  
Benjamin Bonavida

Abstract The transcription factor Yin Yang 1 (YY1) regulates cellular differentiation and response to apoptotic stimuli. YY1 exerts its pleiotropic effects through regulation of promoter activity of critical genes, as well as association and direct modulation of stability and function of a subset of proteins. Genes that are regulated by YY1 include those that control the cell cycle, development, differentiation and tumor suppression. For example, it has been reported that YY1 inhibits the proto-oncoprotein c-Myc (Austen, et al., Oncogene, 1998, 17:511) and negatively regulates the tumor suppressor gene p53 (Sui, et al., 2004, Cell 117: 859). Thus, expression and activity of YY1 in tumor cells may be involved in the pathogenesis of disease, as well as controlling response to drug stimuli. YY1 is regulated at transcriptional and post-translational levels in response to intra and extracellular signals. It has been reported that YY1 undergoes proteolytic cleavage. Caspase-dependent N-terminal cleavage of YY1 has been reported in response to physiological (Fas, TNF, L-glutamate) and chemical (staurosporine, etoposide, okadaic acid) death promoting factors. Similar presence of truncated YY1 is observed in in vitro models of skeletal and cardiac muscle differentiation. N-terminal truncated YY1 lacks its transactivation domain, while DNA binding remains unaltered. Hence, YY1 function may be altered by truncated forms. We hypothesized that post-translational processing of YY1 occurs in bone marrow and may be important in tumor progression and response to therapeutic agents. This study thereby aimed to determine whether altered levels and/or forms of YY1 are expressed in the bone marrow of multiple myeloma patients and to identify their potential downstream effectors. YY1 expression in protein lysates of bone marrow aspirates from nine patients was determined by Western blot analysis. Truncated species of YY1 were present in 6/8 samples. In contrast to myeloma bone marrow, one plasma cell leukemia sample showed high levels of YY1 and no truncated forms. Similar high levels of YY1 expression was observed in established tumor xenografts of a plasma cell leukemia tumor. We are presently extending the pool of analyzed normal and cancer harboring tissues and examining potential correlation of YY1 and its altered forms with disease status and prior therapeutic history. Identification and purification of cell populations that generate altered forms of the protein and its effect on expression and function of YY1 interacting proteins are under investigation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5122-5122
Author(s):  
Albert Oriol ◽  
Ignasi Barba ◽  
Angels Barbera ◽  
Carles Arús ◽  
Jose-Luis Garcia-Dorado ◽  
...  

Abstract Advancements in the pathogenetic pathways in multiple myeloma have led to the identification of several primary and secondary genetic lesions and ultimately to a multiple myeloma genetic classification with prognostic implications. Although disregulation of cyclin activity has been recognized as a key event leading to the multiple myeloma phenotype, little is known about the metabolic consequences of this phenomenon. We have studied intact multiple myeloma cells by high resolution magnetic resonance spectroscopy to establish the metabolomic profiles of different native multiple myeloma cells as compared to other lymphoproliferative disorders. Multiple myeloma cells obtained from bone marrow aspirates (n =15), blood (n =3) or other biologic tissues (n =2) from 20 multiple myeloma patients and separated by density gradient centrifugation were evaluated and metabolic profiles were correlated with cytogenetic characteristics of the disease and patients clinical characteristics. Twelve patients were females (60%) with a median age of 65 years (range 50–82). Multiple myeloma monoclonal proteins were IgG (N=9), IgA (N=5) or BJ (N=6). Five of them (25%) had renal insufficiency. Nine patients (45%) had predominantly extramedullar diesase including four cases of plasma cell leukemia. IgH translocations were identified in 5 samples (25%), hyperploidy in 2 (10%), and other or no genetic lesions in 13 (65%), del13 was present in 9 samples (45%) and p53 alterations in 5 (25%). Bone marrow samples from thirteen patients with conventional multiple myeloma presented a relatively constant metabolic pattern with predominantly lipidic signals and a metilen to metil ratio ranging from 1.9 to 4.9 (median 2.9). No differences in this pattern were observed among subgroups of primary translocations or involvement of Rb and p53 genes. Four patients with plasma cell leukemia and three with predominant extranodal disease presented either non detectable lipid signals (N=3) or a higher metilen to metil ratio ranging from 2.8 to 3.9 (median 3.5). In fact, extranodal or leukemic disease was significantly associated to undetectable lipids (P < 0.031) or the composite variable undetectable lipids or metilen to metil ratio > 3 (P < 0.043). Furthermore, after a median follow-up of 18 months, absence of lipids in the metabolic profile was also associated to a shorter survival (median 0.45 years, 95%CI 0–1.03 versus 3 years, 95%CI 0.95–5.06, P < 0.022). These results suggest that metabolic profiles of different multiple myeloma genetic subtypes share common and reletively constant characteristics, while cells obtained from patients with plasma cell leukemia or predominantly extramedullar disease present a clearly distinct profile, probably reflecting the metabolic effect of clonal evolution at a genetic level.


Blood ◽  
2019 ◽  
Vol 133 (23) ◽  
pp. 2484-2494 ◽  
Author(s):  
Tarek H. Mouhieddine ◽  
Lachelle D. Weeks ◽  
Irene M. Ghobrial

Abstract Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant plasma cell dyscrasia that consistently precedes multiple myeloma (MM) with a 1% risk of progression per year. Recent advances have improved understanding of the complex genetic and immunologic factors that permit progression from the aberrant plasma cell clone to MGUS and overt MM. Additional evidence supports bidirectional interaction of MGUS cells with surrounding cells in the bone marrow niche that regulates malignant transformation. However, there are no robust prognostic biomarkers. Herein we review the current body of literature on the biology of MGUS and provide a rationale for the improved identification of high-risk MGUS patients who may be appropriate for novel clinical interventions to prevent progression or eradicate premalignant clones prior to the development of overt MM.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 723
Author(s):  
Yu ◽  
Wang ◽  
Tammur ◽  
Tamm ◽  
Punab ◽  
...  

Both multiple myeloma (MM) and its precursor state of monoclonal gammopathy of undetermined significance (MGUS) are characterized by an infiltration of plasma cells into the bone marrow, but the mechanisms underlying the disease progression remain poorly understood. Previous research has indicated that 3D nuclear telomeric and centromeric organization may represent important structural indicators for numerous malignancies. Here we corroborate with previously noted differences in the 3D telomeric architecture and report that modifications in the nuclear distribution of centromeres may serve as a novel structural marker with potential to distinguish MM from MGUS. Our findings improve the current characterization of the two disease stages, providing two structural indicators that may become altered in the progression of MGUS to MM.


Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 166-171 ◽  
Author(s):  
PR Greipp ◽  
RA Kyle

We reviewed the clinical and morphological findings in 43 cases of monoclonal gammopathy of undetermined significance (MGUS), 9 of smoldering multiple myeloma (SMM), and 23 of overt multiple myeloma (MM). In all cases, the patients' physicians had requested a bone marrow examination because of the possibility of MM. In all 75 cases, 3H-thymidine labeling indices were performed. The plasma cell labeling index correctly classified 62 of the 75 cases (83%). A linear discriminant function combining the labeling index and percentage of plasma cells improved the accuracy to 92% (69/75), or to 95% (71/75) if patients in whom MM developed within 6 mo were considered to have MM. The labeling index was most critical for the differential diagnosis of MM from SMM (p less than 0.001). Serum or urine M-protein level, percentage of plasma cells or lymphocytes in the bone marrow, and plasma cell grade, asynchrony, and nucleolar size failed to discriminate the group with SMM from the group with MM. In patients with MGUS or SMM, a plasma cell labeling index greater than 0.4% warned of impending MM. The plasma cell labeling index is a reliable diagnostic test when applied in cases of monoclonal gammopathy, especially when differentiation from MM is difficult using standard clinical criteria.


Sign in / Sign up

Export Citation Format

Share Document