scholarly journals Clinical, morphological, and cell kinetic differences among multiple myeloma, monoclonal gammopathy of undetermined significance, and smoldering multiple myeloma

Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 166-171 ◽  
Author(s):  
PR Greipp ◽  
RA Kyle

We reviewed the clinical and morphological findings in 43 cases of monoclonal gammopathy of undetermined significance (MGUS), 9 of smoldering multiple myeloma (SMM), and 23 of overt multiple myeloma (MM). In all cases, the patients' physicians had requested a bone marrow examination because of the possibility of MM. In all 75 cases, 3H-thymidine labeling indices were performed. The plasma cell labeling index correctly classified 62 of the 75 cases (83%). A linear discriminant function combining the labeling index and percentage of plasma cells improved the accuracy to 92% (69/75), or to 95% (71/75) if patients in whom MM developed within 6 mo were considered to have MM. The labeling index was most critical for the differential diagnosis of MM from SMM (p less than 0.001). Serum or urine M-protein level, percentage of plasma cells or lymphocytes in the bone marrow, and plasma cell grade, asynchrony, and nucleolar size failed to discriminate the group with SMM from the group with MM. In patients with MGUS or SMM, a plasma cell labeling index greater than 0.4% warned of impending MM. The plasma cell labeling index is a reliable diagnostic test when applied in cases of monoclonal gammopathy, especially when differentiation from MM is difficult using standard clinical criteria.

Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 166-171 ◽  
Author(s):  
PR Greipp ◽  
RA Kyle

Abstract We reviewed the clinical and morphological findings in 43 cases of monoclonal gammopathy of undetermined significance (MGUS), 9 of smoldering multiple myeloma (SMM), and 23 of overt multiple myeloma (MM). In all cases, the patients' physicians had requested a bone marrow examination because of the possibility of MM. In all 75 cases, 3H-thymidine labeling indices were performed. The plasma cell labeling index correctly classified 62 of the 75 cases (83%). A linear discriminant function combining the labeling index and percentage of plasma cells improved the accuracy to 92% (69/75), or to 95% (71/75) if patients in whom MM developed within 6 mo were considered to have MM. The labeling index was most critical for the differential diagnosis of MM from SMM (p less than 0.001). Serum or urine M-protein level, percentage of plasma cells or lymphocytes in the bone marrow, and plasma cell grade, asynchrony, and nucleolar size failed to discriminate the group with SMM from the group with MM. In patients with MGUS or SMM, a plasma cell labeling index greater than 0.4% warned of impending MM. The plasma cell labeling index is a reliable diagnostic test when applied in cases of monoclonal gammopathy, especially when differentiation from MM is difficult using standard clinical criteria.


2021 ◽  
Vol 16 (3) ◽  
pp. 26-32
Author(s):  
A. S. Khudovekova ◽  
Ya. A. Rudenko ◽  
A. E. Dorosevich

Multiple myeloma is a tumor of plasma cells, one of the most common malignant blood diseases. It is preceded by a stage called monoclonal gammopathy of undetermined significance, from which true multiple myeloma develops in only a small percentage of cases. It was assumed that this process is associated with the accumulation of genetic mutations, but in recent years there is increasing evidence that the bone marrow microenvironment plays a key role in progression and that it can become a target for therapy that prevents the myeloma development. The review considers the role of mesenchymal stem cells, immune system cells, endotheliocytes, fibroblasts, adipocytes, osteoclasts and osteoblasts in multiple myeloma progression, as well as the impact of the sympathetic nervous system and microbiome composition.


Blood ◽  
2001 ◽  
Vol 97 (8) ◽  
pp. 2522-2523 ◽  
Author(s):  
David P. Steensma ◽  
Morie A. Gertz ◽  
Philip R. Greipp ◽  
Robert A. Kyle ◽  
Martha Q. Lacy ◽  
...  

Abstract The plasma cell labeling index (PCLI) is a measure of plasma cell proliferative activity and is an important prognostic factor in newly diagnosed multiple myeloma (MM). Occasionally patients have been observed with stable, plateau phase MM with minimal numbers of residual light-chain–restricted monoclonal plasma cells, but a high PCLI. No data are available on the outcomes for such patients. Data from 57 patients with plateau phase MM and a marrow PCLI of more than 1.0% were compared with 105 matched control patients with MM with a marrow PCLI of less than 1.0%. All patients had less than 10% total plasma cells on marrow aspirate and biopsy. The median time to progression and overall survival were 8 months and 20 months, respectively, in the high PCLI group versus 39 months and 56 months, respectively, in the low PCLI group (P < .0001). These findings suggest that a high PCLI in patients with apparently stable, plateau phase MM is an adverse parameter that may predict a short time to disease progression and death.


2017 ◽  
Vol 2017 ◽  
pp. 1-3
Author(s):  
Bita Fakhri ◽  
Mark Fiala ◽  
Michael Slade ◽  
Peter Westervelt ◽  
Armin Ghobadi

Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4395-4395
Author(s):  
Jihad Aljabban ◽  
David Chen ◽  
Francesca Cottini ◽  
Saad Syed ◽  
Nabeal Aljabban ◽  
...  

Background: Monoclonal gammopathy of undetermined significance (MGUS) is characterized by plasma cell production of abnormal monoclonal protein, or M protein. While MGUS itself is asymptomatic, it generally carries a 1% per year risk to progression to multiple myeloma (MM). The etiology of MGUS, as well as why it progresses to MM in some cases, remains unclear. Moreover, it is not known why some MGUS patients, such as African Americans, have higher risk to progression to MM. Contrasting MGUS and MM can potentially highlight genes that differentiate benign gammopathies from malignant ones and may be involved in disease progression from MGUS to MM. Methods: We employed our STARGEO platform to tag samples from the NCBI Gene Expression Omnibus and performed two separate meta-analysis to compare MGUS and MM transcriptomes. For the first meta-analysis, we tagged MGUS plasma cells recovered from the bone marrow of 101 patients and tagged plasma cells from 64 healthy subjects as a control. For the second analysis. We tagged CD138+ cells from the bone marrow of 383 MM patients and used the MGUS tagged samples as a control. We then analyzed the signature in Ingenuity Pathway Analysis (IPA). Results: From our first meta-analysis of MGUS, we identified EIF2 signaling, regulation of EIF4 and p70S6K signaling, and JAK/STAT signaling as top canonical pathways. Top upstream regulators included TP53, TGFB1, and the proto-oncogene MYCN and MYC (with predicted activation). The most upregulated genes included pro-oncogenes such as KIT and MLLT3, which is well-studied in acute leukemia but not yet described in MGUS. Another top upregulated gene was NRG3, a myeloma growth factor. Additionally, our analysis highlighted key genes involved in transcription and epigenetic regulation. For example, there was upregulation of RBFOX2, which is involved in alternative splicing during oncogenesis and tumor progression, and of PARP15, a transcriptional repressor with poly(ADP-ribose) polymerase activity and candidate gene for drug targeting. Also, there was upregulation of the DNA damage-inducible gene GADD45A, found to promote global DNA methylation. Lastly, we found upregulation of COMMD3, a gene with a recently identified role in humoral activity and B cell migration. From our second meta-analysis comparing MM and MGUS directly, we identified mitochondrial dysfunction, oxidative phosphorylation, purine nucleotides de novo biosynthesis, and sirtuin signaling as top upstream regulators. Like our first analysis, TP53 (with predicted inhibition), TGFB1, and MYC (with predicted activation) were top upstream regulators. The most upregulated gene was NUP62, a nucleoporin and novel regulator of cell proliferation and inducer of MYC activity. Our analysis also illustrated pro-oncogenic signaling pathways such as the Wnt pathway through upregulation of the ubiquitin ligase RNF14 and serine/threonine kinase through upregulation of SRPK2. Moreover, we found upregulation of the super-enhancer DUSP4, a phosphatase whose over-activity may drive MM severity. Lastly, we found upregulation of lysosomal associated membrane protein LAMP5. LAMP5 was recently identified in single-cell RNA sequencing of MM patients and may play a significant role in disease. Conclusions: Our study illustrates signaling pathways in MGUS that are present in MM such as EIF2, JAK/STAT, and MYC signaling. We also illustrate gene activity in MGUS that may predispose to MM progression such as NRG3, RBFOX2, and PARP15. GADD45RA and COMMD3 may play novel roles in MGUS. Our second analysis highlighted disease activity that persist from MGUS to MM, such as MYC signaling. It is possible that the genes from this analysis that aims to distinguish MM from MGUS may be responsible for tipping the scales from benignity to malignancy. Genes such as DUSP4, RN14, LAMP5, and others could serve as novel biomarkers or targets to MM and risk of progression of MGUS to MM. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Author(s):  
Morie A. Gertz

Multiple myeloma represents 1.4% of all new patients with cancer and will result in an estimated 11,090 deaths in 2014. It is twice as common in black men as in white men and 2.5 times more common in black women than in white women. Myeloma is the 14th most common cause of cancer in the United States, with a median age at diagnosis of 69 years. Multiple myeloma is defined by the presence of a clonal growth of plasma cells, usually in the bone marrow, but patients may also present with extramedullary disease. Anemia and bone disease are common in patients with multiple myeloma. Multiple myeloma cells display multiple genetic abnormalities, with no one specific genetic lesion common to a majority of patients. This module describes the immunologic profile of multiple myeloma and its diagnosis, monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, plasmacytoma, plasma cell leukemia, the clinical presentation of multiple myeloma bone disease, anemia, renal impairment, hypercalcemia, and neurologic symptoms associated with multiple myeloma. Therapy for transplantation-eligible and non–transplantation-eligible patients, maintenance treatment for multiple myeloma, Waldenström macroglobulinemia, and amyloidosis are also discussed. Tables outline the risk of monoclonal gammopathy of undetermined significance evolution, the myeloma staging system, recommended diagnostic testing and uniform response criteria for myeloma, and commonly used regimens in the treatment of myeloma. Figures include a magnetic resonance image showing multiple plasmacytomas, tibial lytic lesion from myeloma, calvarial lytic lesions, a positron emission tomographic scan in a myeloma patient, and hyperviscosity causing retinal hemorrhages. This review contains 5 highly rendered figures, 5 tables, and 149 references.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4779-4779
Author(s):  
Harris V.K. Naina ◽  
Robert Kyle ◽  
Thomas M. Habermann ◽  
Samar Harris ◽  
Fernando G. Cosio ◽  
...  

Abstract Background: Monoclonal gammopathy of undetermined significance (MGUS) is reported in 3 to 5 percent of population, with the prevalence increasing with advancing age. Patients with MGUS are at increased risk for progression to multiple myeloma or other plasma cell dyscrasias. There is a paucity of information on clinical outcomes of patients with MGUS undergoing renal transplantation. A retrospective study was performed to determine wether MGUS is a contraindication to renal transplantation. Methods: Data was collected from both the kidney transplant and MGUS database. The diagnosis of MGUS was made on the basis of either serum protein electrophoresis (SPEP) or immunofixation after excluding multiple myeloma, amyloidosis and monoclonal immunoglobulin deposition disease. Results: Between 1977 and 2004, 3518 patients underwent kidney transplantation of whom 23 patients had a preexisting monoclonal gammopathy of undetermined significance (MGUS). Fourteen (61%) of these patients were males. The median age at the time of transplant was 59 ±12 years. Ten patients (43.5%) had IgG Kappa (GK), 7 (30.4%) had IgG Lambda (GL), 2 (8.7%) had IgA Lambda (AL), 1 (4.3%) had IgA Kappa (AK), 2 (8.7%) had IgM Lambda (ML). One patient had a biclonal gammopathy GL and ML. Patients were monitored with either SPEP or immunofixation for median duration of 1542 days after transplantation. Thirteen patients had either no change or stable monoclonal protein, 6 had a decrease in their paraprotein level. Two patients had a mild increase in their paraprotein. Two patients with GK developed into biclonal gammopathy (GK and AK). The median follow up of this cohort after the renal transplant was 1783 days. Twelve (52%) patients remained alive at the time of the study. A patient with GK prior to the transplant who underwent kidney transplantation twice developed a biclonal gammopathy and was found to have increased plasma cells (20%) in bone marrow after 14 years. On follow up for 6 years, his M-protein remained stable. Another patient was found to have 17% plasma cells around the time of kidney transplantation. He had a stable M-protein at follow-up, but underwent a stem cell transplant for recurrent immunotactoid glomerulonephritis. Two (9%) patients developed more than 15% plasma cells in their bone marrow with a stable M-protein. None of the patients with a preexisting MGUS evolved into multiple myeloma. Conclusion: In this small study, the presence of MGUS prior to kidney transplantation did not appear to have increased the incidence of multiple myeloma post transplant. Therefore, MGUS by itself should not be considered as an absolute contraindication for renal transplantation.


Blood ◽  
2019 ◽  
Vol 133 (23) ◽  
pp. 2484-2494 ◽  
Author(s):  
Tarek H. Mouhieddine ◽  
Lachelle D. Weeks ◽  
Irene M. Ghobrial

Abstract Monoclonal gammopathy of undetermined significance (MGUS) is a premalignant plasma cell dyscrasia that consistently precedes multiple myeloma (MM) with a 1% risk of progression per year. Recent advances have improved understanding of the complex genetic and immunologic factors that permit progression from the aberrant plasma cell clone to MGUS and overt MM. Additional evidence supports bidirectional interaction of MGUS cells with surrounding cells in the bone marrow niche that regulates malignant transformation. However, there are no robust prognostic biomarkers. Herein we review the current body of literature on the biology of MGUS and provide a rationale for the improved identification of high-risk MGUS patients who may be appropriate for novel clinical interventions to prevent progression or eradicate premalignant clones prior to the development of overt MM.


Sign in / Sign up

Export Citation Format

Share Document