scholarly journals Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay

Cancer ◽  
2014 ◽  
Vol 120 (23) ◽  
pp. 3627-3634 ◽  
Author(s):  
Yuri E. Nikiforov ◽  
Sally E. Carty ◽  
Simon I. Chiosea ◽  
Christopher Coyne ◽  
Umamaheswar Duvvuri ◽  
...  
Surgery ◽  
2018 ◽  
Vol 163 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Aida Taye ◽  
Dillon Gurciullo ◽  
Brett A. Miles ◽  
Ashita Gupta ◽  
Randall P. Owen ◽  
...  

Author(s):  
Rishab Bharadwaj ◽  
Thulasi Raman ◽  
Ravikumar Thangadorai ◽  
Deenadayalan Munirathnam

Hereditary hemolytic anemias present a unique diagnostic challenge due to their wide phenotypic and genotypic spectrum. Accurate diagnosis is essential to ensure appropriate treatment. We report two cases, which presented as hemolytic anemias, but initial workup was inconclusive and they were finally diagnosed with the help of Next Generation Sequencing (Dehydrated Hereditary Stomatocytosis and Kӧln Hemoglobinopathy). The introduction of gene sequencing to aid diagnosis of these disorders is a revolutionary step forward and should be incorporated earlier in the workup of such patients.


2017 ◽  
Vol 142 (2) ◽  
pp. 178-183 ◽  
Author(s):  
Maren Y. Fuller ◽  
Dina Mody ◽  
April Hull ◽  
Kristi Pepper ◽  
Heather Hendrickson ◽  
...  

Context.— Thyroid nodules have a prevalence of approximately 70% in adults. Fine-needle aspiration (FNA) is a minimally invasive, cost-effective, standard method to collect tissue from thyroid nodules for cytologic examination. However, approximately 15% of thyroid FNA specimens cannot be unambiguously diagnosed as benign or malignant. Objective.— To investigate whether clinically actionable data can be obtained using next-generation sequencing of residual needle rinse material. Design.— A total of 24 residual needle rinse specimens with malignant (n = 6), indeterminate (n = 9), or benign (n = 9) thyroid FNA diagnoses were analyzed in our clinical molecular diagnostics laboratory using next-generation sequencing assays designed to detect gene mutations and translocations that commonly occur in thyroid cancer. Results were correlated with surgical diagnoses and clinical outcomes. Results.— Interpretable data were generated from 23 of 24 residual needle rinse specimens. Consistent with its well-known role in thyroid malignancy, BRAF V600E mutations were detected in 4 malignant cases. An NRAS mutation was detected in 1 benign case. No mutations were detected from specimens with indeterminate diagnoses. Conclusions.— Our data demonstrate that residual thyroid FNA needle rinses are an adequate source of material for molecular diagnostic testing. Importantly, detection of a mutation implicated in thyroid malignancy was predictive of the final surgical diagnosis and clinical outcome. Our strategy to triage thyroid nodules with indeterminate cytology with molecular testing eliminates the need to perform additional FNA passes into dedicated media or to schedule additional invasive procedures. Further investigation with a larger sample size to confirm the clinical utility of our proposed strategy is underway.


2021 ◽  
Vol 22 (11) ◽  
pp. 5684
Author(s):  
Adrian Dockery ◽  
Laura Whelan ◽  
Pete Humphries ◽  
G. Jane Farrar

Inherited retinal diseases (IRDs) represent a collection of phenotypically and genetically diverse conditions. IRDs phenotype(s) can be isolated to the eye or can involve multiple tissues. These conditions are associated with diverse forms of inheritance, and variants within the same gene often can be associated with multiple distinct phenotypes. Such aspects of the IRDs highlight the difficulty met when establishing a genetic diagnosis in patients. Here we provide an overview of cutting-edge next-generation sequencing techniques and strategies currently in use to maximise the effectivity of IRD gene screening. These techniques have helped researchers globally to find elusive causes of IRDs, including copy number variants, structural variants, new IRD genes and deep intronic variants, among others. Resolving a genetic diagnosis with thorough testing enables a more accurate diagnosis and more informed prognosis and should also provide information on inheritance patterns which may be of particular interest to patients of a child-bearing age. Given that IRDs are heritable conditions, genetic counselling may be offered to help inform family planning, carrier testing and prenatal screening. Additionally, a verified genetic diagnosis may enable access to appropriate clinical trials or approved medications that may be available for the condition.


2019 ◽  
Author(s):  
Di Wu ◽  
Weiyuan Huang ◽  
Shuo Li ◽  
Jie Zhang ◽  
Xiaohua Chen ◽  
...  

Abstract BACKGROUND: Non-syndromic hearing loss is clinically and genetically heterogeneous. In this study, we characterized the clinical features of twelve Chinese Han deaf families in which mutations in common deafness genes GJB2 , SLC26A4 and MT-RNR1 were excluded. RESULTS: Targeted next-generation sequencing of 147 known deafness genes was performed in probands of ten families, while whole-exome sequencing was applied in those of the rest two. Pathogenic mutations in a total of 11 rare deafness genes, OTOF , CDH23 , PCDH15 , PDZD7 , ADGRV1 , KARS , OTOG , GRXCR2 , MYO6 , GRHL2 , and POU3F4 , were identified in all 12 probands, with 17 mutations being novel. Intrafamilial co-segregation of the mutations and the deafness phenotype were confirmed by Sanger sequencing. CONCLUSIONS: Our results expanded the mutation spectrum and genotype-phenotype correlation of non-syndromic hearing loss in Chinese Hans and also emphasized the importance of combining both next-generation sequencing and detailed auditory evaluation to achieve a more accurate diagnosis for non-syndromic hearing loss.


Sign in / Sign up

Export Citation Format

Share Document