scholarly journals Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning

Author(s):  
Stefano Pagani ◽  
Andrea Manzoni
Author(s):  
Hassan F Ahmed ◽  
Hamayun Farooq ◽  
Imran Akhtar ◽  
Zafar Bangash

In this article, we introduce a machine learning–based reduced-order modeling (ML-ROM) framework through the integration of proper orthogonal decomposition (POD) and deep neural networks (DNNs), in addition to long short-term memory (LSTM) networks. The DNN is utilized to upscale POD temporal coefficients and their respective spatial modes to account for the dynamics represented by the truncated modes. In the second part of the algorithm, temporal evolution of the POD coefficients is obtained by recursively predicting their future states using an LSTM network. The proposed model (ML-ROM) is tested for flow past a circular cylinder characterized by the Navier–Stokes equations. We perform pressure mode decomposition analysis on the flow data using both POD and ML-ROM to predict hydrodynamic forces and demonstrate the accuracy of the proposed strategy for modeling lift and drag coefficients.


2021 ◽  
Vol 446 ◽  
pp. 110666 ◽  
Author(s):  
Wenqian Chen ◽  
Qian Wang ◽  
Jan S. Hesthaven ◽  
Chuhua Zhang

2021 ◽  
Vol 33 (10) ◽  
pp. 106110
Author(s):  
Shuvayan Brahmachary ◽  
Ananthakrishnan Bhagyarajan ◽  
Hideaki Ogawa

2021 ◽  
Vol 33 (6) ◽  
pp. 067123
Author(s):  
Suraj Pawar ◽  
Omer San ◽  
Aditya Nair ◽  
Adil Rasheed ◽  
Trond Kvamsdal

Sign in / Sign up

Export Citation Format

Share Document