Noble Metal Collection through Air: Perovskite Oxide as a Novel Collector

ChemPhysChem ◽  
2010 ◽  
Vol 12 (1) ◽  
pp. 109-111 ◽  
Author(s):  
Masakazu Daté ◽  
Katsuhiro Nomura ◽  
Hiroyuki Kageyama ◽  
Tadahiro Fujitani
Keyword(s):  
Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 563
Author(s):  
Jialin Song ◽  
Ziliang Wang ◽  
Xingxing Cheng ◽  
Xiuping Wang

Removal of nitrogen oxides during coal combustion is a subject of great concerns. The present study reviews the state-of-art catalysts for NO reduction by CO, CH4, and H2. In terms of NO reduction by CO and CH4, it focuses on the preparation methodologies and catalytic properties of noble metal catalysts and non-noble metal catalysts. In the technology of NO removal by H2, the NO removal performance of the noble metal catalyst is mainly discussed from the traditional carrier and the new carrier, such as Al2O3, ZSM-5, OMS-2, MOFs, perovskite oxide, etc. By adopting new preparation methodologies and introducing the secondary metal component, the catalysts supported by a traditional carrier could achieve a much higher activity. New carrier for catalyst design seems a promising aspect for improving the catalyst performance, i.e., catalytic activity and stability, in future. Moreover, mechanisms of catalytic NO reduction by these three agents are discussed in-depth. Through the critical review, it is found that the adsorption of NOx and the decomposition of NO are key steps in NO removal by CO, and the activation of the C-H bond in CH4 and H-H bonds in H2 serves as a rate determining step of the reaction of NO removal by CH4 and H2, respectively.


2021 ◽  
Vol 1160 ◽  
pp. 65-74
Author(s):  
Ibrahim A. Amar ◽  
Mohammed M. Ahwidi

The electrocatalytic ammonia synthesis using water (along with nitrogen) as a hydrogen source is proposed as an alternative green and clean technology to the energy-intensive and CO2-emitting process (Haber-Bosch) for ammonia production. Besides, a selective electrocatalyst for ammonia synthesis versus the competing hydrogen evolution remains elusive. This study aims to investigate the electrocatalytic activity of non-noble metal Co and Fe-free perovskite oxide-based composite cathode (La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Gd0.18Ca0.02O2-δ) towards ammonia synthesis from H2O and N2. The electrocatalyst was synthesized via a sol-gel process and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ammonia was successfully with a maximum formation rate of 2.5 × 10-10 mol s-1 cm-2 and Faradaic efficiency of 0.52% at 400 oC and applied voltage of 1.4 V. The results demonstrated that the proposed non-noble metal-based electrocatalyst is a promising material for the carbon-free ammonia synthesis process.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


Sign in / Sign up

Export Citation Format

Share Document