Anatomophysiology of the Henle's Loop: Emphasis on the Thick Ascending Limb

2021 ◽  
pp. 3119-3139
Author(s):  
Andrée‐Anne Marcoux ◽  
Laurence E. Tremblay ◽  
Samira Slimani ◽  
Marie‐Jeanne Fiola ◽  
Fabrice Mac‐Way ◽  
...  
1989 ◽  
Vol 77 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Shozo Torikai

1. In order to examine the possibility of heterogeneity in the dependence of renal tubular cells upon oxidative phosphorylation and exogenous substrates, the effects of antimycin A and substrate deprivation on adenosine 5′-triphosphate (ATP) content were examined in isolated rat nephron segments in vitro at 37°C. 2. Antimycin A (5 μmol/l) caused varying decrements in cell ATP level within 5 min in the following order: proximal tubules > cortical thick ascending limb of Henle's loop (cTAL) > cortical collecting duct (cCD) in the cortex, and thin descending limb of Henle's loop (TDL) > medullary thick ascending limb of Henle's loop (mTAL) > outer medullary collecting duct (omCD) in the inner stripe of the outer medulla. In the thick ascending limb and the collecting duct, the segments located in the cortex were more sensitive than those in the medulla. 3. Substrate deprivation for 30 min markedly decreased the cell ATP content in cortical and medullary proximal tubules and also in medullary TDL, whereas it caused only a slight decrease in cTAL and mTAL with no change in cCD and omCD. 4. Media made hypertonic by the addition of 200 mmol/l NaCl under aerobic conditions, increased the requirement for exogenous substrates in TDL and mTAL, but not in omCD. This stimulation was seen to a lesser extent in media made hypertonic by the addition of mannitol instead of NaCl. 5. Taking into consideration a knowledge of rat kidney architecture and intrarenal gradient of oxygen partial pressure, it is likely that the observed dependency upon both oxygen and exogenous substrates in the renal tubular cells reflects adaptation of such cells to their anatomical location, and to the availability of those substances in situ. Furthermore, extracellular sodium concentration and osmolarity stimulate metabolic requirements to a different extent among the nephron segments.


2001 ◽  
Vol 12 (7) ◽  
pp. 1327-1334 ◽  
Author(s):  
KATSUKI KOBAYASHI ◽  
SHINICHI UCHIDA ◽  
SHUKI MIZUTANI ◽  
SEI SASAKI ◽  
FUMIAKI MARUMO

Abstract. CLC-K2, a kidney-specific member of the CLC chloride channel family, is thought to play an important role in the transepithelial Cl- transport in the kidney. This consensus was first reached shortly after it was demonstrated that the mutations of the human CLCNKB gene resulted in Bartter's syndrome type III. To clarify the pathogenesis, the exact intrarenal and cellular localization of CLC-K2 by immunohistochemistry of the Clcnk1-/- mouse kidney were investigated by use of an anti-CLC-K antibody that recognized both CLC-K1 and CLC-K2. CLC-K2 is expressed in the thick ascending limb of Henle's loop and distal tubules, where it is localized to the basolateral membranes. The localization of CLC-K2 to these nephron segments strongly implies that CLC-K2 confers the basolateral chloride conductance in the thick ascending limb of Henle's loop and distal tubules, where Cl- is taken up by the bumetanide-sensitive Na-K-2Cl cotransporter or the thiazide-sensitive Na-Cl cotransporter at the apical membranes. CLC-K2 expression was also shown to extend into the connecting tubule in the basolateral membrane. CLC-K2 was found in basolateral membranes of the type A intercalated cells residing along the collecting duct. This localization strongly suggests that CLC-K2 confers the basolateral conductance in the type A intercalated cells where Cl- is taken up by the anion exchanger in exchange for HCO3- at the basolateral membranes. These aspects of CLC-K2 localization suggest that CLC-K2 is important in Cl- transport in the distal nephron segments.


1979 ◽  
Vol 237 (2) ◽  
pp. F114-F120 ◽  
Author(s):  
A. I. Katz ◽  
A. Doucet ◽  
F. Morel

Na-K-ATPase activity along the rabbit, rat, and mouse nephron was determined with a micromethod that measures directly labeled phosphate released by the hydrolysis of [gamma-32P]ATP. Na-K-ATPase activity was highest in the rat, intermediate in the mouse, and lowest in the rabbit nephron. With the exception of rabbit cortical thick ascending limb, the enzyme profile was similar in the three species: Na-K-ATPase activity per millimeter tubule length was highest in the distal convoluted tubule and thick ascending limb of Henle's loop, intermediate in the proximal convoluted tubule, and lowest in the pars recta and collecting tubule. The enzyme was present in the thin limbs of Henle's loop, but its activity was very low and measurements were close to the sensitivity limit of the method. Both the absolute activity and the fraction of the total enzyme represented by Na-K-ATPase were severalfold higher than in kidney homogenates. Finally, the Na-K-ATPase activity measured in certain segments of the rat and rabbit nephron in this study seems sufficient to account in theory for the active component of the net sodium transport found in the corresponding region of the nephron with either in vivo or in vitro single tubule microperfusion techniques.


2016 ◽  
Vol 469 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Nina Himmerkus ◽  
Allein Plain ◽  
Rita D. Marques ◽  
Svenja R. Sonntag ◽  
Alexander Paliege ◽  
...  

1999 ◽  
Vol 276 (4) ◽  
pp. F552-F558 ◽  
Author(s):  
Momono Yoshikawa ◽  
Shinichi Uchida ◽  
Atsushi Yamauchi ◽  
Akiko Miyai ◽  
Yujiro Tanaka ◽  
...  

To gain insight into the physiological role of a kidney-specific chloride channel, CLC-K2, the exact intrarenal localization was determined by in situ hybridization. In contrast to the inner medullary localization of CLC-K1, the signal of CLC-K2 in our in situ hybridization study was highly evident in the superficial cortex, moderate in the outer medulla, and absent in the inner medulla. To identify the nephron segments where CLC-K2 mRNA was expressed, we performed in situ hybridization of CLC-K2 and immunohistochemistry of marker proteins (Na+/Ca2+exchanger, Na+-Cl−cotransporter, aquaporin-2 water channel, and Tamm-Horsfall glycoprotein) in sequential sections of a rat kidney. Among the tubules of the superficial cortex, CLC-K2 mRNA was highly expressed in the distal convoluted tubules, connecting tubules, and cortical collecting ducts. The expression of CLC-K2 in the outer and inner medullary collecting ducts was almost absent. In contrast, a moderate signal of CLC-K2 mRNA was observed in the medullary thick ascending limb of Henle’s loop, but the signal in the cortical thick ascending limb of Henle’s loop was low. These results clearly demonstrated that CLC-K2 was not colocalized with CLC-K1 and that its localization along the nephron segments was relatively broad compared with that of CLC-K1.


1994 ◽  
Vol 46 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Carolyn M. Macica ◽  
Bruno A. Escalante ◽  
Michael S. Conners ◽  
Nicholas R. Ferreri

1995 ◽  
Vol 268 (5) ◽  
pp. F940-F947 ◽  
Author(s):  
G. Wolf ◽  
F. N. Ziyadeh ◽  
U. Helmchen ◽  
G. Zahner ◽  
R. Schroeder ◽  
...  

A murine SV40-transformed renal epithelial cell line derived from medullary thick ascending limb of Henle's loop (MTAL) was established and characterized by morphology, antigen expression, and biochemical criteria. These MTAL cells express a single class of high-affinity receptors for angiotensin II (ANG II) and transcripts for the AT1 subtype of ANG II receptors. ANG II, in a dose-dependent manner, induced proliferation of MTAL cells. This observation is in striking contrast to syngeneic proximal tubular cells in which it was previously shown that the peptide induced cellular hypertrophy and slightly inhibited proliferation [G. Wolf and E. G. Neilson. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28: F768-F777, 1990]. The AT1-receptor antagonist losartan (10(-6) M), but not an AT2-receptor antagonist, blocked the mitogenic effects of ANG II in MTAL cells. Coincubation of quiescent MTAL cells with ANG II and 5% fetal calf serum further increased proliferation compared with cells grown only in serum. In contrast to proximal tubular cells, ANG II failed to induce transforming growth factor-beta 1 mRNA and protein synthesis in MTAL cells. Our data collectively suggest that ANG II is a mitogen for MTAL cells in vitro. Therefore, epithelial cells derived from different parts of the nephron, even when transformed with SV40 virus and while under cell culture conditions, exhibit a distinct pattern of growth behavior after stimulation with ANG II.


1999 ◽  
Vol 277 (2) ◽  
pp. F219-F226 ◽  
Author(s):  
Patricia Fernández-Llama ◽  
Carolyn A. Ecelbarger ◽  
Joseph A. Ware ◽  
Peter Andrews ◽  
Alanna J. Lee ◽  
...  

Cyclooxygenase inhibitors, such as indomethacin and diclofenac, have well-described effects to enhance renal water reabsorption and urinary concentrating ability. Concentrating ability is regulated in part at the level of the thick ascending limb of Henle’s loop, where active NaCl absorption drives the countercurrent multiplication mechanism. We used semiquantitative immunoblotting to test the effects of indomethacin and diclofenac, given over a 48-h period, on the expression levels of the ion transporters responsible for active NaCl transport in the thick ascending limb. Both agents strongly increased the expression level of the apical Na-K-2Cl cotransporter in both outer medulla and cortex. Neither agent significantly altered outer medullary expression levels of other thick ascending limb proteins, namely, the type 3 Na/H exchanger (NHE-3), Tamm-Horsfall protein, or α1- or β1-subunits of the Na-K-ATPase. Administration of the EP3-selective PGE2analog, misoprostol, to indomethacin-treated rats reversed the stimulatory effect of indomethacin on Na-K-2Cl cotransporter expression. We conclude that cyclooxygenase inhibitors enhance urinary concentrating ability in part through effects to increase Na-K-2Cl cotransporter expression in the thick ascending limb of Henle’s loop. This action is most likely due to elimination of an EP3-receptor-mediated tonic inhibitory effect of PGE2 on cAMP production.


1982 ◽  
Vol 243 (2) ◽  
pp. F167-F172 ◽  
Author(s):  
M. Imai ◽  
E. Kusano

Arginine vasopressin (AVP) has been shown to stimulate active Cl transport across the medullary thick ascending limb of Henle's loop (MAL) in association with an increase in adenylate cyclase activity. To determine whether the failure to demonstrate active Cl transport across the thin ascending limb of Henle's loop (TAL) in previous in vitro perfusion studies was due to the absence of AVP in the preparation, we examined the effect of AVP on adenylate cyclase activity and Cl transport in the hamsters TAL. AVP (1 mU/ml) increased adenylate cyclase activity in the hamster TAL (20.7 +/- 5.2 control vs. 46.2 +/- 10.1 fmol . mm-1 . 30 min-1, n = 6, P less than 0.05) but not in the descending limb (27.8 +/- 7.0 control vs. 20.4 +/- 2.7, n = 4, P less than 0.05). When both MAL and TAL were perfused, a lumen-positive transepithelial voltage (Vt) was observed. The Vt was increased by adding 1 or 10 mU/ml AVP to the bath. When only the TAL was perfused, the Vt was not different from zero. Similar results were obtained in mouse renal tubules. In other experiments, AVP did not affect the diffusion potential generated when a transepithelial NaCl gradient was present. AVP or dibutyryl cAMP caused little or no change in efflux of radioactive chloride across the hamster TAL. These findings suggest that electrogenic chloride transport is not demonstrable in the TAL even in the presence of AVP. The physiologic role of AVP-sensitive adenylate cyclase in the TAL remains to be established.


Sign in / Sign up

Export Citation Format

Share Document