Effect of rapid thermal annealing on Zn1-xCdxO layers grown by radio-frequency magnetron co-sputtering

2010 ◽  
Vol 45 (10) ◽  
pp. 1050-1056 ◽  
Author(s):  
J. H. Yu ◽  
J. H. Kim ◽  
D. S. Park ◽  
T. S. Jeong ◽  
C. J. Youn ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Tao-Hsing Chen ◽  
Tzu-Yu Liao

This study utilizes radio frequency magnetron sputtering (RF sputtering) to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate and then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperatures are 300°C , 500°C, and 550°C, respectively. Ti:GZO transparent conductive oxide (TCO) thin films are deposited on glass substrates using a radio frequency magnetron sputtering technique. The thin films are then annealed at temperatures of 300°C, 500°C, and 550°C, respectively, for rapid thermal annealing. The effects of the annealing temperature on the optical properties, resistivity, and nanomechanical properties of the Ti:GZO thin films are then systematically explored. The results show that all of the annealed films have excellent transparency (~90%) in the visible light range. Moreover, the resistivity of the Ti:GZO films reduces with an increasing annealing temperature, while the carrier concentration and Hall mobility both increase. Finally, the hardness and Young’s modulus of the Ti:GZO thin films are both found to increase as the annealing temperature is increased.


Sign in / Sign up

Export Citation Format

Share Document