Aluminum Manganese Oxides with Mixed Crystal Structure: High-Energy-Density Cathodes for Rechargeable Sodium Batteries

ChemSusChem ◽  
2014 ◽  
Vol 7 (7) ◽  
pp. 1870-1875 ◽  
Author(s):  
Dong-Wook Han ◽  
Jun-Hwan Ku ◽  
Ryoung-Hee Kim ◽  
Dong-Jin Yun ◽  
Seok-Soo Lee ◽  
...  
Author(s):  
Ingeborg Treu Røe ◽  
Sondre K. Schnell

Dendrite growth on the lithium metal anode still obstructs a widespread commercialization of high energy density lithium metal batteries. In this work, we investigate how the crystal structure of the...


ACS Nano ◽  
2018 ◽  
Vol 12 (3) ◽  
pp. 2809-2817 ◽  
Author(s):  
Hongli Wan ◽  
Jean Pierre Mwizerwa ◽  
Xingguo Qi ◽  
Xin Liu ◽  
Xiaoxiong Xu ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1201 ◽  
Author(s):  
Neha Chawla ◽  
Meer Safa

Lithium-ion batteries are currently used for various applications since they are lightweight, stable, and flexible. With the increased demand for portable electronics and electric vehicles, it has become necessary to develop newer, smaller, and lighter batteries with increased cycle life, high energy density, and overall better battery performance. Since the sources of lithium are limited and also because of the high cost of the metal, it is necessary to find alternatives. Sodium batteries have shown great potential, and hence several researchers are working on improving the battery performance of the various sodium batteries. This paper is a brief review of the current research in sodium-sulfur and sodium-air batteries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
El Mostafa Benchafia ◽  
Xianqin Wang ◽  
Zafar Iqbal ◽  
Sufian Abedrabbo

Abstract$$\hbox {N}_5\hbox {AsF}_6$$ N 5 AsF 6 is the first successfully synthesized salt that has a polymeric nitrogen moeity ($$\hbox {N}_5^+$$ N 5 + ). Although 12 other $$\hbox {N}_5^+$$ N 5 + salts followed, with $$\hbox {N}_5\hbox {SbF}_6$$ N 5 SbF 6 and $$\hbox {N}_5\hbox {Sb}_2\hbox {F}_{11}$$ N 5 Sb 2 F 11 being the most stable, the crystal structure of $$\hbox {N}_5\hbox {AsF}_6$$ N 5 AsF 6 remains unknown. Currently, it is impossible to experimentally determine the structures of $$\hbox {N}_5\hbox {AsF}_6$$ N 5 AsF 6 due to its marginal stability and explosive nature. Here, following an ab initio evolutionary prediction and using only the stoichiometry of $$\hbox {N}_5\hbox {AsF}_6$$ N 5 AsF 6 as a starting point, we were able to reveal the crystal structure of this high energy density material (HEDM). The $$\hbox {C}_{2V}$$ C 2 V symmetry of the $$\hbox {N}_5^+$$ N 5 + cation, as suggested from earlier investigations, is confirmed to be the symmetry adopted by this polymeric nitrogen within the crystal. This result gave full confidence in the validity of this crystal prediction approach. While stability of the $$\hbox {N}_5^+$$ N 5 + within the crystal is found to be driven by electronic considerations, the marginal stability of this HEDM is found to be related to a partial softening of its phonon modes.


CrystEngComm ◽  
2018 ◽  
Vol 20 (40) ◽  
pp. 6183-6196 ◽  
Author(s):  
S. Thakur ◽  
S. Maiti ◽  
T. Paul ◽  
N. Besra ◽  
S. Sarkar ◽  
...  

Sheet-on-rod/flake hierarchy embracing Co3O4 and MnO2 on carbon fabric is used for binder-free high-energy-density supercapacitor. Electrochemical behaviour is illuminated on the basis of shape-porosity-property correlation.


Sign in / Sign up

Export Citation Format

Share Document