Passive approximations of double‐exponent fractional‐order impedance functions

2021 ◽  
Vol 49 (5) ◽  
pp. 1274-1284
Author(s):  
Stavroula Kapoulea ◽  
Costas Psychalinos ◽  
Ahmed S. Elwakil
2019 ◽  
Vol 28 (11) ◽  
pp. 1950187
Author(s):  
Guishu Liang ◽  
Xiaoyan Huo

Passive network synthesis, as an important part of circuit and system theory, has been well developed in integer-order circuits. With the development of fractional-order calculus and fractional-order elements, the problem of using fractional-order passive networks to realize fractional-order immittance functions has drawn much attention. In this paper, the realization of a fractional-order biquadratic immittance function is considered. First, the form of a fractional-order biquadratic function and some theorems that could promote later research are introduced. Second, a detailed study for the realization of a fractional-order biquadratic immittance function is shown. Finally, through summarizing the realizability conditions of each network, we have obtained the scope of fractional biquadratic impedance functions that can be realized by this paper.


Author(s):  
A. George Maria Selvam ◽  
◽  
R. Janagaraj ◽  
Britto Jacob. S ◽  
◽  
...  

2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


Sign in / Sign up

Export Citation Format

Share Document