Synthesis of Fractional-Order Biquadratic Immittance Functions

2019 ◽  
Vol 28 (11) ◽  
pp. 1950187
Author(s):  
Guishu Liang ◽  
Xiaoyan Huo

Passive network synthesis, as an important part of circuit and system theory, has been well developed in integer-order circuits. With the development of fractional-order calculus and fractional-order elements, the problem of using fractional-order passive networks to realize fractional-order immittance functions has drawn much attention. In this paper, the realization of a fractional-order biquadratic immittance function is considered. First, the form of a fractional-order biquadratic function and some theorems that could promote later research are introduced. Second, a detailed study for the realization of a fractional-order biquadratic immittance function is shown. Finally, through summarizing the realizability conditions of each network, we have obtained the scope of fractional biquadratic impedance functions that can be realized by this paper.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 429
Author(s):  
E. Reyes-Luis ◽  
G. Fernández Anaya ◽  
J. Chávez-Carlos ◽  
L. Diago-Cisneros ◽  
R. Muñoz Vega

We developed a somewhat novel fractional-order calculus workbench as a certain generalization of the Khalil’s conformable derivative. Although every integer-order derivate can naturally be consistent with fully physical-sense problem’s quotation, this is not the standard scenario of the non-integer-order derivatives, even aiming physics systems’s modelling, solely.We revisited a particular case of the generalized conformable fractional derivative and derived a differential operator, whose properties overcome those of the integer-order derivatives, though preserving its clue advantages.Worthwhile noting, that two-fractional indexes differential operator we are dealing, departs from the single-fractional index framework, which typifies the generalized conformable fractional derivative. This distinction leads to proper mathematical tools, useful in generalizing widely accepted results, with potential applications to fundamental Physics within fractional order calculus. The later seems to be especially appropriate for exercising the Sturm-Liouville eigenvalue problem, as well as the Euler-Lagrange equation and to clarify several operator algebra matters.



2018 ◽  
Vol 11 (4) ◽  
pp. 1058-1099
Author(s):  
Syamal K. Sen ◽  
J. Vasundhara Devi ◽  
R.V.G. Ravi Kumar

Fractional order calculus always includes integer-order too. The question that crops up is: Can it be a widely accepted generalized version of classical calculus? We attempt to highlight the current problems that come in the way to define the fractional calculus that will be universally accepted as a perfect generalized version of integer-order calculus and to point out the efforts in this direction. Also, we discuss the question: Given a non-integer fractional order differential equation as a mathematical model can we readily write the corresponding physical model and vice versa in the same way as we traditionally do for classical differential equations? We demonstrate numerically computationally the pros and cons while addressing the questions keeping in the background the generalization of the inverse of a matrix.



Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1544
Author(s):  
Chunpeng Wang ◽  
Hongling Gao ◽  
Meihong Yang ◽  
Jian Li ◽  
Bin Ma ◽  
...  

Continuous orthogonal moments, for which continuous functions are used as kernel functions, are invariant to rotation and scaling, and they have been greatly developed over the recent years. Among continuous orthogonal moments, polar harmonic Fourier moments (PHFMs) have superior performance and strong image description ability. In order to improve the performance of PHFMs in noise resistance and image reconstruction, PHFMs, which can only take integer numbers, are extended to fractional-order polar harmonic Fourier moments (FrPHFMs) in this paper. Firstly, the radial polynomials of integer-order PHFMs are modified to obtain fractional-order radial polynomials, and FrPHFMs are constructed based on the fractional-order radial polynomials; subsequently, the strong reconstruction ability, orthogonality, and geometric invariance of the proposed FrPHFMs are proven; and, finally, the performance of the proposed FrPHFMs is compared with that of integer-order PHFMs, fractional-order radial harmonic Fourier moments (FrRHFMs), fractional-order polar harmonic transforms (FrPHTs), and fractional-order Zernike moments (FrZMs). The experimental results show that the FrPHFMs constructed in this paper are superior to integer-order PHFMs and other fractional-order continuous orthogonal moments in terms of performance in image reconstruction and object recognition, as well as that the proposed FrPHFMs have strong image description ability and good stability.



Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.



2021 ◽  
Vol 143 ◽  
pp. 109913
Author(s):  
Zhihua Li ◽  
Guangyu Dan ◽  
Vikram Tammana ◽  
Scott Johnson ◽  
Zheng Zhong ◽  
...  


2010 ◽  
Vol 63 (3) ◽  
pp. 562-569 ◽  
Author(s):  
Xiaohong Joe Zhou ◽  
Qing Gao ◽  
Osama Abdullah ◽  
Richard L. Magin


2009 ◽  
Author(s):  
Bijoy K. Mukherjee ◽  
Santanu Metia ◽  
Sio-Iong Ao ◽  
Alan Hoi-Shou Chan ◽  
Hideki Katagiri ◽  
...  


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.



Sign in / Sign up

Export Citation Format

Share Document