circuit and system
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
Liu Yue ◽  
Zhao Chun ◽  
Zhang Lin

In the process of complex product design, modeling in different fields and different disciplines is often involved. Designers often face many different development kits, platforms, and theories, among which significant differences exist. Especially in the process of algorithm-hardware implementation, it is necessary to have mastery of the knowledge including algorithm, hardware, circuit, and system engineering. In this paper, a modeling method of algorithm-hardware based on SysML is proposed to reduce the difficulty of algorithm-hardware modeling. By using the method, the designers who do not know the knowledge of hardware can also easily build the algorithm-hardware model. In this method, a method of graphical system modeling based on SysML is used, where the elements of the algorithm-hardware model are described by SysML graphical models. Then, the SysML graphical models are converted to Very-High-Speed Integrated Circuit Hardware Description Language. At last, a detecting algorithm of random number is complemented by the modeling method in this paper and the simulation results are presented at the conclusion.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1074
Author(s):  
Felipe Pinto ◽  
Ioannis Vourkas

Resistive switching devices (memristors) constitute a promising device technology that has emerged for the development of future energy-efficient general-purpose computational memories. Research has been done both at device and circuit level for the realization of primitive logic operations with memristors. Likewise, important efforts are placed on the development of logic synthesis algorithms for resistive RAM (ReRAM)-based computing. However, system-level design of computational memories has not been given significant consideration, and developing arithmetic logic unit (ALU) functionality entirely using ReRAM-based word-wise arithmetic operations remains a challenging task. In this context, we present our results in circuit- and system-level design, towards implementing a ReRAM-based general-purpose computational memory with ALU functionality. We built upon the 1T1R crossbar topology and adopted a logic design style in which all computations are equivalent to modified memory read operations for higher reliability, performed either in a word-wise or bit-wise manner, owing to an enhanced peripheral circuitry. Moreover, we present the concept of a segmented ReRAM architecture with functional and topological features that benefit flexibility of data movement and improve latency of multi-level (sequential) in-memory computations. Robust system functionality is validated via LTspice circuit simulations for an n-bit word-wise binary adder, showing promising performance features compared to other state-of-the-art implementations.


Author(s):  
Aditya Tiwary

New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 124152-124164
Author(s):  
Antonio Canelas ◽  
Fabio Passos ◽  
Nuno Lourenco ◽  
Ricardo Martins ◽  
Elisenda Roca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document