In vitro metabolism of selected bioactive compounds of Eurycoma longifolia root extract to identify suitable markers in doping control

2018 ◽  
Vol 11 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Pia Bräuer ◽  
Patricia Anielski ◽  
Stefan Schwaiger ◽  
Hermann Stuppner ◽  
Thi Van Anh Tran ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bae Huey Tee ◽  
See Ziau Hoe ◽  
Swee Hung Cheah ◽  
Sau Kuen Lam

AlthoughEurycoma longifoliahas been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluatedin vitro. Results showed that DCM-II reduced (p<0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p<0.05) while bradykinin- (BK-) induced relaxation enhanced (p<0.001).In vitro, DCM-II inhibited (p<0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediatedviainhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Faisal GG ◽  
Zakaria SM ◽  
Najmuldeen GF

Introduction: Currently, researchers are aiming to explore herbal plants to replace synthetic drugs because herbal plants contain high active compounds and fewer side effects. Our study was done to determine the antibacterial activity of Eurycoma longifolia Jack (E. longifolia) root using ethanol based extract. Methods: Five types of pathogenic bacterial strains were used; Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa). Disc diffusion assay and Minimum Inhibitory Concentration (MIC) tests were used to determine the inhibition zone and turbidity of suspension which reflects the antibacterial activity of the extract. Results: The ethanolic extract of E. longifolia Jack root extract showed positive results against Gram-positive bacteria (S. aureus and B. cereus) and Gramnegative (S. typhi). B.cereus and S.typhi showed inhibition zone values of 11.76mm and 14.33mm at the extract concentration of 150mg/ml that were higher than the positive control values (9.00, 12.67mm) respectively. However, E. coli and P. aeruginosa did not show any inhibition by the ethanol-based extract. Conclusion: From the results we can conclude that E.Longifolia root extract possesses antibacterial activity that can be further explored to produce new medicinal products.


2009 ◽  
Vol 121 (S3) ◽  
Author(s):  
Walther H. Wernsdorfer ◽  
Sabariah Ismail ◽  
Kit Lam Chan ◽  
Kanungnit Congpuong ◽  
Gunther Wernsdorfer

Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


Sign in / Sign up

Export Citation Format

Share Document