equine plasma
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 1)

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 818
Author(s):  
Chien-Chun Liu ◽  
Yung-Chin Hsiao ◽  
Lichieh Julie Chu ◽  
Po-Jung Wang ◽  
Chien-Hsin Liu ◽  
...  

Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28–42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.


2021 ◽  
Vol 62 ◽  
pp. 3-17
Author(s):  
Mariana V Cepeda ◽  
Juan C. Jiménez ◽  
Flor H. Pujol ◽  
Héctor R. Rangel ◽  
Carlos Bello ◽  
...  

Emerging viruses such as the COVID-19-inducing virus, SARSCoV- 2, represent a threat to human health, unless effective vaccines, drugs or alternative treatments, such as passive immunization, become accessible. Animal-derived immunoglobulins, such as equine immunoglobulins might be useful as immunoprophylaxis or immunotherapy against this viral disease. Therapeutic antibodies (Abs) for SARS-CoV-2 were obtained from hyperimmune equine plasma using the Spike protein receptor binding domain (RBD) as an immunogen. The presence of anti-RBD antibodies was evaluated by ELISA and the titres of neutralizing antibodies were determined in viral cell culture. Immunized horses generated high-titre of anti-RBD antibodies with antiviral neutralizing activity on Vero-E6 cells of 1/1,000. To minimize potential adverse effects, the immunoglobulins were digested with pepsin, and purified to obtain the F(ab’)2 fragments with the protocol standardized by Biotecfar C.A for the production of snake antivenom. Pre-immune serum displayed an unexpected anti-RBD reactivity by ELISA (titre up to 1/900) and Western Blot, but no angioneutralizing activity. Modelling of the RBD of equine coronavirus showed that some of the known epitopes of SARS-CoV-2 RBD were structurally conserved in the equine coronavirus protein. This might suggest that some of the reactivity observed in the pre-immune serum to the SARS-CoV-2 RBD might be due to a previous exposure to equine coronavirus.


Metabolomics ◽  
2021 ◽  
Vol 17 (5) ◽  
Author(s):  
Undine Christmann ◽  
Courtney L. Hancock ◽  
Cathleen M. Poole ◽  
Audrey L. Emery ◽  
Jesse R. Poovey ◽  
...  
Keyword(s):  

2021 ◽  
pp. 104063872110054
Author(s):  
Hadi Habib ◽  
Carrie J. Finno ◽  
Ingrid Gennity ◽  
Gianna Favro ◽  
Erin Hales ◽  
...  

Vitamin E deficiencies can impact normal growth and development in humans and animals, and assessment of circulating levels of vitamin E and its metabolites may be an important endpoint for evaluation. Development of a sensitive method to detect and quantify low concentrations of vitamin E and metabolites in biological specimens allows for a proper diagnosis for patients and animals that are deficient. We developed a method to simultaneously extract, detect, and quantify the vitamin E compounds alpha-tocopherol (α-TP), gamma-tocopherol (γ-TP), alpha-tocotrienol (α-TT), and gamma-tocotrienol (γ-TT), and the corresponding metabolites formed after β-oxidation of α-TP and γ-TP, alpha-carboxymethylbutyl hydroxychroman (α-CMBHC) and alpha- or gamma-carboxyethyl hydroxychroman (α- or γ-CEHC), respectively, from equine plasma and serum. Quantification was achieved through liquid chromatography–tandem mass spectrometry. We applied a 96-well high-throughput format using a Phenomenex Phree plate to analyze plasma and serum. Compounds were separated by using a Waters ACQUITY UPLC BEH C18 column with a reverse-phase gradient. The limits of detection for the metabolites and vitamin E compounds were 8–330 pg/mL. To validate the method, intra-day and inter-day accuracy and precision were evaluated along with limits of detection and quantification. The method was then applied to determine concentrations of these analytes in plasma and serum of horses. Alpha-TP levels were 3–6 µg/mL of matrix; the metabolites were found at much lower levels, 0.2–1.0 ng/mL of matrix.


Sign in / Sign up

Export Citation Format

Share Document