Baumartenwechsel in den Walliser Waldföhrenwäldern verstärkt nach grossen Störungen

2018 ◽  
Vol 169 (5) ◽  
pp. 260-268 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Violette Doublet ◽  
Cynthia Nussbaumer ◽  
Linda Feichtinger ◽  
Andreas Rigling

Vegetation shift in Scots pine forests in the Valais accelerated by large disturbances In the past dozen years, several studies have concluded a vegetation shift from Scots pine to oak (pubescent and sessile) forests in the low elevated zones of the Valais. It is, however, not fully clear in which way such a vegetation shift actually occurs and on which processes such a shift would be based. Two studies, one on the tree demography in the intact Pfynwald and the other on the tree regeneration on the large Leuk forest fire patch, serve to discuss different aspects of the shift from Scots pine to oak. The forest stands of Pfynwald consist of 67% Scots pines and 14% oaks. Regenerating trees are 2–3.5 times more frequent in small gaps than under canopy. In gaps of the Upper Pfynwald, seedlings and saplings of Scots pine are three times more abundant than oaks, while both species regenerate in similar quantities under canopy. In the Lower Pfynwald, young oaks – especially seedlings – are more frequent than Scots pines. A different process is going on at the lower part in the Leuk forest fire patch where Scots pines prevailed before the burn of 2003. While Scots pines regenerate exclusively close to the edge of the intact forest, oaks not only resprout from trunk but also profit from unlimited spreading of their seeds by the Eurasian jay. Regeneration from seeds are hence observed in the whole studied area, independent of the proximity of seed trees. After the large fire disturbance, a mixed forests with a high share of oaks is establishing, which translates to a rapid vegetation shift. The two trajectories are discussed in the light of climate change.

Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 558 ◽  
Author(s):  
Natalia I. Stavrova ◽  
Vadim V. Gorshkov ◽  
Paul N. Katjutin ◽  
Irina Ju. Bakkal

The process of post-fire recovery in mixed Siberian spruce–Scots pine forests (Picea obovata Ledeb.-Pinus sylvestris L.), typical for the European North-West, was studied in the Kola peninsula (Russia). We used the spatial–temporal approach to reveal the size structure (diameter at breast height (DBH) distribution) and vital state of Siberian spruce and Scots pine stands, tree regeneration and species structure of the dwarf shrub–herb and lichen–moss layers at different stages of post-fire succession (8–380 years after the fire). It was found that in both forest-forming species, the process of stand stratification results in the allocation of two size groups of trees. In Siberian spruce, these groups persist throughout the succession. In Scots pine, DBH distributions become more homogeneous at the middle of succession (150–200 years after the fire) due to the extinction of small-size individuals. Siberian spruce stands are dominated by moderately and strongly weakened trees at all succession stages. The vitality status of Scots pine stands is higher compared to Siberian spruce up to 150 years after a fire. The dynamics of regeneration activity is similar in both species, with a minimum at the middle of the restoration period. The results indicate that in Siberian spruce–Scots pine forests, the stand structure and regeneration activity differs substantially in the first half of succession (up to 200 years after the fire) and become similar in the late-succession community. The study of lower layers revealed that the cover of moss–lichen and dwarf shrub–herb layers stabilize 150 years after a fire. Changes in species structure in both layers are observed until the late stage of succession. The originality of the structure and dynamics of mixed Siberian spruce–Scots pine forests is revealed based on a comparison with pure Siberian spruce forests in the same region.


2021 ◽  
Vol 771 ◽  
pp. 144834
Author(s):  
Michał H. Węgrzyn ◽  
Patrycja Fałowska ◽  
Joanna Kołodziejczyk ◽  
Karima Alzayany ◽  
Piotr Wężyk ◽  
...  

2015 ◽  
Vol 17 (8) ◽  
pp. 3009-3024 ◽  
Author(s):  
Ana Rincón ◽  
Blanca Santamaría-Pérez ◽  
Sonia G. Rabasa ◽  
Aurore Coince ◽  
Benoit Marçais ◽  
...  

2004 ◽  
Vol 155 (6) ◽  
pp. 178-190 ◽  
Author(s):  
Andreas Rigling ◽  
Pascale Weber ◽  
Paolo Cherubini ◽  
Matthias Dobbertin

The aim of this paper is to demonstrate the use of dendroecological methods to analyse the various processes involved in forest dynamics. Using dendroecological case studies of the Scots pine forests of Valais (Switzerland) as an example we discuss the most relevant processes of forest dynamics and their consequences on stand structures and mortality rates. We focus on the development history of these Scots pine forests under human impact and on the impact of biotic and abiotic factors on tree growth. Most of today's extended Scots pine forests (< 1500 m a.s.l.)must be interpreted as part of an ongoing natural succession under heavy human influence. In time, without management or natural disturbances, most of these pine forests will develop into broadleaved forests (lower altitudes) or spruce-firforests(higher altitudes).


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 847 ◽  
Author(s):  
Hanna Szmidla ◽  
Miłosz Tkaczyk ◽  
Radosław Plewa ◽  
Grzegorz Tarwacki ◽  
Zbigniew Sierota

Common mistletoe is increasingly mentioned as contributing not only to the decline of deciduous trees at roadside and in city parks, but to conifers in stands. The presence of Viscum in fir stands has been known for many years, but since 2015 has also been the cause of damage to pine. In 2019, mistletoe was observed on 77.5 thousand hectares of Scots pine stands in southern and central Poland. Drought resulting from global climate change is implicated as an important factor conducive to weakening trees and making them more susceptible to the spread of mistletoe and other pests. This paper presents an overview of the latest information on the development of this semi-parasitic plant in Poland, its impact on tree breeding traits and raw material losses, as well as current options for its prevention and eradication.


2019 ◽  
Vol 440 ◽  
pp. 70-78 ◽  
Author(s):  
Tea Tullus ◽  
Martin Tishler ◽  
Raul Rosenvald ◽  
Arvo Tullus ◽  
Reimo Lutter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document