scholarly journals Severity of Overstory Mortality Influences Conifer Recruitment and Growth in Mountain Pine Beetle-Affected Forests

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 536 ◽  
Author(s):  
Kristen Pelz ◽  
Charles Rhoades ◽  
Robert Hubbard ◽  
Frederick Smith

The severity of lodgepole pine mortality from mountain pine beetle outbreaks varies with host tree diameter, density, and other structural characteristics, influencing subcanopy conditions and tree regeneration. We measured density and leader growth of shade-intolerant lodgepole pine, shade-tolerant Engelmann spruce, and very shade-tolerant subalpine fir regeneration beneath stands that experienced moderate and high overstory lodgepole pine mortality (average 40% and 85% of total basal area) a decade earlier. Lodgepole comprised >90% of the overstory basal area and mature spruce and fir were present in both mortality levels, though live basal area and disturbance history differed. Post-beetle outbreak recruitment was high in both mortality levels, but there were more lodgepole in high than moderate mortality plots (1140 stems ha−1 vs. 60 stems ha−1) and more subalpine fir in moderate than high mortality plots (4690 stems ha−1 vs. 2870 stems ha−1). Pine advance regeneration, established prior to outbreak, was more dense in high mortality than moderate mortality sites (930 stems ha−1 vs. 310 stems ha−1), but the trend was generally the opposite for the other conifers. Lodgepole recruitment increased and subalpine fir decreased with greater forest floor light availability. All species grew faster in high mortality areas than their counterparts in moderate mortality areas. However, in high mortality areas pine grew faster than the more shade tolerant species, and in moderate mortality areas spruce and fir grew faster than pine. These species-specific responses to the degree of overstory mortality will influence future stand composition and rate of forest recovery after mountain pine beetle outbreaks.

1987 ◽  
Vol 17 (10) ◽  
pp. 1234-1239 ◽  
Author(s):  
Mark D. McGregor ◽  
Gene D. Amman ◽  
Richard F. Schmitz ◽  
Robert D. Oakes

Partial cutting prescriptions were applied in the fall of 1978 through the early winter of 1980 to lodgepole pine stands (Pinuscontorta Douglas var. latifolia Engelmann) threatened by mountain pine beetle (Dendroctonusponderosae Hopkins) in the Kootenai and Lolo National Forests in western Montana, U.S.A. Partial cutting prescriptions consisted of removing from separate stands all trees 17.8, 25,4, and 30.5 cm and larger diameter at breast height (dbh), and prescriptions leaving 18.4, 23.0, and 27.6 m2 basal area per hectare. In thinned stands, the first 5 years' results following cutting showed greatly reduced tree losses to mountain pine beetle when compared with untreated stands (P < 0.01) on both forests. There were no significant differences in tree losses among partial cut treatments (P > 0.05). Post treatment mortality of lodgepole pine 12.7 cm and larger dbh to mountain pine beetle averaged 4.0 to 38.6% on the Kootenai and 6.0 to 17.1% on the Lolo in treated stands, compared with averages of 93.8 and 73.1% in untreated stands. Partial cutting appears to be useful for reducing lodgepole losses to mountain pine beetle.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 552 ◽  
Author(s):  
Howard Williams ◽  
Sharon Hood ◽  
Christopher Keyes ◽  
Joel Egan ◽  
José Negrón

Mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) is an aggressive bark beetle that attacks numerous Pinus spp. and causes extensive mortality in lodgepole pine (Pinus contorta Douglas ex Loudon; LPP) forests in the western United States and Canada. We used pre-outbreak LPP attributes, cumulative MPB attack severity, and areal extent of mortality data to identify subwatershed-scale forest attributes associated with severe MPB-caused tree mortality that occurred across the Northern Rockies, USA from 1999–2014. We upscaled stand-level data to the subwatershed scale to allow identification of large LPP areas vulnerable to MPB. The highest mortality occurred in subwatersheds where LPP mean basal area was greater than 11.5 m2 ha−1 and LPP quadratic mean diameter was greater than or equal to 18 cm. A coarse assessment of federally-owned LPP-dominated forestland in the analysis area indicated about 42% could potentially be silviculturally treated. Silvicultural management may be a suitable option for many LPP forests, and our hazard model can be used to identify subwatersheds with LPP attributes associated with high susceptibility to MPB across landscape spatial scales. Identifying highly susceptible subwatersheds can help prioritize general areas for potential treatments, especially where spatially extensive areas of contiguous, highly susceptible LPP occur.


2008 ◽  
Vol 38 (11) ◽  
pp. 2826-2836 ◽  
Author(s):  
Gordon D. Nigh ◽  
Joseph A. Antos ◽  
Roberta Parish

Insect outbreaks, such as the current mountain pine beetle ( Dendroctonus ponderosae Hopkins) outbreak in lodgepole pine ( Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests in British Columbia, are major disturbances in many forests. After an insect outbreak, the advance regeneration typically forms a new canopy, which may be adequate for timber objectives in some stands. Our purpose was to quantify and then model the abundance and spatial distribution of advance regeneration (trees <10.0 m tall). We sampled understory and overstory trees in 28 lodgepole pine stands in south-central British Columbia at two spatial scales: 0.1 ha plots and 25 m2 subplots. We developed models predicting advance regeneration abundance and spatial distribution. Density of advance regeneration averaged 2689 trees/ha (range 120 to 23 000 trees/ha), most of which were <1 m tall. Although advance regeneration was clumped, 75% of the subplots contained at least one individual. Models indicated negative relationships of advance regeneration abundance to overstory basal area and density. Over half the stands had enough advance regeneration to form new stands of adequate density, indicating that use of advance regeneration is a viable option in this mountain pine beetle outbreak and probably other insect disturbances.


2018 ◽  
Vol 48 (10) ◽  
pp. 1159-1170 ◽  
Author(s):  
Jodi N. Axelson ◽  
Brad C. Hawkes ◽  
Lara van Akker ◽  
René I. Alfaro

The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a native bark beetle and a major disturbance agent in western North American forests. In the 1970s and 1980s, a MPB outbreak occurred in Waterton Lakes National Park (WLNP) in southwestern Alberta. The MPB outbreak resulted in variable levels of mortality of mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson), reducing density, volume, and basal area of overstory trees. By 2010, lodgepole pine was proportionally no longer the dominant overstory species, with increases in non-pine conifer and broadleaf species. The MPB susceptibility index decreased in most stands over time, especially in stands with the highest MPB-caused mortality. Downed woody material was characterized by fine and coarse fuel mass and volume, which both increased from 2002 to 2010, and the abundance of coarse fuels was highest in 2010, nearly 30 years after peak MPB activity. Density of understory saplings and small regeneration increased from 2002 to 2010 and was dominated by non-pine conifer and broadleaf species; lodgepole pine was nearly absent. Hierarchical clustering using 2010 MPB susceptibility and composition data characterized biological legacies remaining after the MPB outbreak. These legacies suggest multiple successional trajectories in WLNP dominated by species other than lodgepole pine. The MPB outbreak resulted in greater heterogeneity in composition and structure and suggests that stands have been resilient to this disturbance.


2010 ◽  
Vol 40 (12) ◽  
pp. 2452-2456 ◽  
Author(s):  
Byron J. Collins ◽  
Charles C. Rhoades ◽  
Jeffery Underhill ◽  
Robert M. Hubbard

The extent and severity of overstory lodgepole pine ( Pinus contorta var. latifolia Engelm. ex Wats.) mortality from mountain pine beetle ( Dendroctonus ponderosae Hopkins) has created management concerns associated with forest regeneration, wildfire risk, human safety, and scenic, wildlife, and watershed resources in western North America. Owing to the unprecedented nature of the outbreak and associated management in the southern Rocky Mountains, it is unknown if the forests that regenerate after this current period of extensive change will differ from those that regenerated in the past. Here, we compare the density and species composition of post-harvest seedling recruits in pre-outbreak (1980–1996) and outbreak stands (2002–2007). Lodgepole pine accounted for more than 95% of post-harvest seedling recruitment and the density of seedlings colonizing clearcuts was equal during both the pre-outbreak and outbreak periods. Compared with harvested areas, the density of tree regeneration was 75% lower in uncut forests and was more evenly distributed among subalpine fir ( Abies lasiocarpa (Hook.) Nutt.) and lodgepole pine. This comparison provides evidence that the density of seedling recruitment will be at least as high after extensive pine beetle caused mortality as under healthy, pre-outbreak conditions and that the species composition of stands regenerating after this outbreak will differ between treated and untreated areas.


2000 ◽  
Vol 30 (1) ◽  
pp. 44-49 ◽  
Author(s):  
T L Shore ◽  
L Safranyik ◽  
J P Lemieux

A system for rating the susceptibility of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) stands to the mountain pine beetle (Dendroctonus ponderosae Hopkins) was field tested in 38 stands in the Cariboo forest region of British Columbia in a retrospective study. A linear relationship was defined between the percentage of basal area killed by the mountain pine beetle and the susceptibility indices for the sample stands. The system was further tested using an independent data set of 41 stands from across southern British Columbia. Forty of the 41 stands fell within the 95% prediction interval of the original model data for stand susceptibility. This study provides validation for a susceptibility rating model described in 1992. The regression model and associated confidence interval also provide a useful tool for landscape level loss predictions due to the mountain pine beetle.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 525
Author(s):  
Kristen Pelz ◽  
Frederick Smith

Aspen (Populus tremuloides) and lodgepole pine (Pinus contorta var. latifolia) co-occur in the southern Rocky Mountains (USA), where mountain pine beetle (MPB, Dendroctonus ponderosae) has caused extensive lodgepole pine mortality since the late 1990s. Both species excel in post-disturbance high-light environments, but lodgepole pine has generally been thought to establish poorly on undisturbed seedbeds, and aspen suckering may be inhibited by intact aspen overstory. We ask whether lodgepole pine and aspen will regenerate in sufficient quantities to revegetate these forests. We visited a random sample of aspen and lodgepole pine stands across the affected landscape in northern Colorado and southern Wyoming to measure regeneration and overstory mortality. Lodgepole pine regeneration is occurring in 85% of stands, and most stands have >550 stems ha−1. The median aspen sucker density was 6175 stems ha−1. Surprisingly, neither lodgepole pine nor aspen regeneration density was related to overstory mortality level. Animal damage is currently affecting aspen in these forests. Over 50% of stands had damage to 60% or more of their suckers, but 30% of stands had <20% of their stems damaged. Browsed stems were significantly shorter for their ages and were shorter than the 2.5-m height threshold for possible elk browsing. However, the results suggest that sufficient quantities of down lodgepole pine may protect aspen from damage and allow aspen to successfully recruit to the overstory. Multiple regression analysis showed that down lodgepole pine basal area, followed by browsing pressure, were the most important predictors of sucker height and the proportion of suckers browsed. Although 15% of stands had no lodgepole pine regeneration, aspen and lodgepole pine forests are generally regenerating despite animal browsing on aspen. This study is the first to present a regional perspective on regeneration in MPB-affected lodgepole pine and aspen forests, and overall, intervention does not seem necessary to ensure a mix of both species in the future.


2011 ◽  
Vol 41 (12) ◽  
pp. 2403-2412 ◽  
Author(s):  
Daniel M. Kashian ◽  
Rebecca M. Jackson ◽  
Heather D. Lyons

Extensive outbreaks of the mountain pine beetle ( Dendroctonus ponderosae Hopkins) will alter the structure of many stands that will likely be attacked again before experiencing a stand-replacing fire. We examined a stand of lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Watson) in Grand Teton National Park currently experiencing a moderate-level outbreak and previously attacked by mountain pine beetle in the 1960s. Consistent with published studies, tree diameter was the main predictor of beetle attack on a given tree, large trees were preferentially attacked, and tree vigor, age, and cone production were unimportant variables for beetle attack at epidemic levels. Small trees killed in the stand were killed based mainly on their proximity to large trees and were likely spatially aggregated with large trees as a result of the previous outbreak. We concluded that the driving factors of beetle attack and their spatial patterns are consistent across outbreak severities but that stand structure altered by the previous outbreak had implications for the current outbreaks in the same location. This study should catalyze additional research that examines how beetle-altered stand structure affects future outbreaks — an important priority for predicting their impacts under climate change scenarios that project increases in outbreak frequency and extent.


Sign in / Sign up

Export Citation Format

Share Document