scholarly journals Different degree of paternal mt DNA leakage between male and female progeny in interspecific D rosophila crosses

2014 ◽  
Vol 4 (13) ◽  
pp. 2633-2641 ◽  
Author(s):  
Emmanouil Dokianakis ◽  
Emmanuel D. Ladoukakis
2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1319931-s-0032-1319931
Author(s):  
S. Al Rowas ◽  
R. Gawri ◽  
R. Haddad ◽  
A. Almaawi ◽  
L. E. Chalifour ◽  
...  

Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 801-813 ◽  
Author(s):  
Yu Bi ◽  
Xiaoliang Ren ◽  
Runsheng Li ◽  
Qiutao Ding ◽  
Dongying Xie ◽  
...  

Hybrid male progeny from interspecies crosses are more prone to sterility or inviability than hybrid female progeny, and the male sterility and inviability often demonstrate parent-of-origin asymmetry. However, the underlying genetic mechanism of asymmetric sterility or inviability remains elusive. We previously established a genome-wide hybrid incompatibility (HI) landscape between Caenorhabditis briggsae and C. nigoni by phenotyping a large collection of C. nigoni strains each carrying a C. briggsae introgression. In this study, we systematically dissect the genetic mechanism of asymmetric sterility and inviability in both hybrid male and female progeny between the two species. Specifically, we performed reciprocal crosses between C. briggsae and different C. nigoni strains that each carry a GFP-labeled C. briggsae genomic fragment referred to as introgression, and scored the HI phenotypes in the F1 progeny. The aggregated introgressions cover 94.6% of the C. briggsae genome, including 100% of the X chromosome. Surprisingly, we observed that two C. briggsaeX fragments that produce C. nigoni male sterility as an introgression rescued hybrid F1 sterility in males fathered by C. briggsae. Subsequent backcrossing analyses indicated that a specific interaction between the X-linked interaction and one autosome introgression is required to rescue the hybrid male sterility. In addition, we identified another two C. briggsae genomic intervals on chromosomes II and IV that can rescue the inviability, but not the sterility, of hybrid F1 males fathered by C. nigoni, suggesting the involvement of differential epistatic interactions in the asymmetric hybrid male fertility and inviability. Importantly, backcrossing of the rescued sterile males with C. nigoni led to the isolation of a 1.1-Mb genomic interval that specifically interacts with an X-linked introgression, which is essential for hybrid male fertility. We further identified three C. briggsae genomic intervals on chromosome I, II, and III that produced inviability in all F1 progeny, dependent on or independent of the parent-of-origin. Taken together, we identified multiple independent interacting loci that are responsible for asymmetric hybrid male and female sterility, and inviability, which lays a foundation for their molecular characterization.


Epidemiology ◽  
2006 ◽  
Vol 17 (Suppl) ◽  
pp. S93
Author(s):  
B Le Magueress-Battistoni ◽  
F Odet ◽  
C Guigon ◽  
A Vérot ◽  
R Guyot ◽  
...  

1979 ◽  
Vol 111 (1) ◽  
pp. 105-109 ◽  
Author(s):  
H. G. Wylie

AbstractFemales of Muscidifurax zaraptor K. & L. produce a smaller percentage of female progeny as the ratio of ovipositing females to hosts (house fly pupae) increases. Delays in oviposition are apparently responsible for the sex ratio change, because they reduce the percentage of fertilized eggs, i.e. female eggs, that the parasites lay. Delays increase in frequency as the parasite:host ratio increases, and result mostly from interference among the ovipositing females; the interference is mostly or entirely physical. Solitary females of M. zaraptor produce slightly fewer though not significantly fewer female progeny when low host densities delay oviposition; more tests would be required to confirm this effect. There is no evidence for differential survival of the male and female parasite larvae on superparasitized hosts.


2002 ◽  
Vol 79 (1) ◽  
pp. 23-40 ◽  
Author(s):  
FABRICE SAVARIT ◽  
JEAN-FRANÇOIS FERVEUR

In Drosophila melanogaster, the main cuticular hydrocarbons (HCs) are some of the pheromones involved in mate discrimination. These are sexually dimorphic in both their occurrence and their effects. The production of predominant HCs has been measured in male and female progeny of 220 PGal4 lines mated with the feminising UAS-transformer transgenic strain. In 45 lines, XY flies were substantially or totally feminised for their HCs. Surprisingly, XX flies of 14 strains were partially masculinised. Several of the PGal4 enhancer-trap variants screened here seem to interact with sex determination mechanisms involved in the control of sexually dimorphic characters. We also found a good relationship between the degree of HC transformation and GAL4 expression in oenocytes. The fat body was also involved in the switch of sexually dimorphic cuticular hydrocarbons but its effect was different between the sexes.


Author(s):  
Andrew F Scheyer ◽  
Milene Borsoi ◽  
Olivier JJ Manzoni

AbstractCannabis is the world’s most widely abused illicit drug and consumption amongst women during and surrounding the period of pregnancy is increasing. Previously, we have shown that cannabinoid exposure via lactation during the early postnatal period disrupts early developmental trajectories of prefrontal cortex maturation and induces behavioral abnormalities during the first weeks of life in male and female rat progeny. Here, we investigated the lasting consequences of this postnatal cannabinoid exposure on synaptic and behavioral parameters in the adult offspring of Δ9-tetrahydrocannabinol (THC)-treated dams. At adulthood, these perinatally THC-exposed rats exhibits deficits in social discrimination accompanied by an overall augmentation of social exploratory behavior. These behavioral alterations were further correlated with multiple abnormalities in synaptic plasticity in the prefrontal cortex, including lost endocannabinoid-mediated long-term depression (LTD), lost long-term potentiation and augmented mGlu2/3-LTD. Finally, basic parameters of intrinsic excitability at prefrontal cortex pyramidal neurons were similarly altered by the perinatal THC exposure. Thus, perinatal THC exposure via lactation induces lasting deficits in behavior and synaptic function which persist into adulthood life in male and female progeny.


Sign in / Sign up

Export Citation Format

Share Document