scholarly journals occAssess: An R package for assessing potential biases in species occurrence data

2021 ◽  
Author(s):  
Robin J. Boyd ◽  
Gary D. Powney ◽  
Claire Carvell ◽  
Oliver L. Pescott
2021 ◽  
Author(s):  
Robin James Boyd ◽  
Gary Powney ◽  
Claire Carvell ◽  
Oliver Pescott

Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a representative sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables quick and easy screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial and environmental dimensions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf-nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspect of data coverage appear to have changed over time. We then discuss additional ways in which the package could be used, highlight its limitations, and point to where it could be improved in the future. Going forward, we hope that occAssess will help to improve the quality, and transparency, of assessments of species occurrence data as a necessary first step where they are being used for ecological research at large scales.


2015 ◽  
Author(s):  
Alexander Zizka ◽  
Alexandre Antonelli

1. Large-scale species occurrence data from geo-referenced observations and collected specimens are crucial for analyses in ecology, evolution and biogeography. Despite the rapidly growing availability of such data, their use in evolutionary analyses is often hampered by tedious manual classification of point occurrences into operational areas, leading to a lack of reproducibility and concerns regarding data quality. 2. Here we present speciesgeocodeR, a user-friendly R-package for data cleaning, data exploration and data visualization of species point occurrences using discrete operational areas, and linking them to analyses invoking phylogenetic trees. 3. The three core functions of the package are 1) automated and reproducible data cleaning, 2) rapid and reproducible classification of point occurrences into discrete operational areas in an adequate format for subsequent biogeographic analyses, and 3) a comprehensive summary and visualization of species distributions to explore large datasets and ensure data quality. In addition, speciesgeocodeR facilitates the access and analysis of publicly available species occurrence data, widely used operational areas and elevation ranges. Other functionalities include the implementation of minimum occurrence thresholds and the visualization of coexistence patterns and range sizes. SpeciesgeocodeR accompanies a richly illustrated and easy-to-follow tutorial and help functions.


Author(s):  
Alexander Zizka ◽  
Alexandre Antonelli ◽  
Daniele Silvestro

AbstractGeo-referenced species occurrences from public databases have become essential to biodiversity research and conservation. However, geographical biases are widely recognized as a factor limiting the usefulness of such data for understanding species diversity and distribution. In particular, differences in sampling intensity across a landscape due to differences in human accessibility are ubiquitous but may differ in strength among taxonomic groups and datasets. Although several factors have been described to influence human access (such as presence of roads, rivers, airports and cities), quantifying their specific and combined effects on recorded occurrence data remains challenging. Here we present sampbias, an algorithm and software for quantifying the effect of accessibility biases in species occurrence datasets. Sampbias uses a Bayesian approach to estimate how sampling rates vary as a function of proximity to one or multiple bias factors. The results are comparable among bias factors and datasets. We demonstrate the use of sampbias on a dataset of mammal occurrences from the island of Borneo, showing a high biasing effect of cities and a moderate effect of roads and airports. Sampbias is implemented as a well-documented, open-access and user-friendly R package that we hope will become a standard tool for anyone working with species occurrences in ecology, evolution, conservation and related fields.


Author(s):  
Michael K. Young ◽  
Daniel J. Isaak ◽  
Kevin S. McKelvey ◽  
Michael K. Schwartz ◽  
Kellie J. Carim ◽  
...  

2018 ◽  
Vol 93 ◽  
pp. 333-343 ◽  
Author(s):  
Charlotte L. Outhwaite ◽  
Richard E. Chandler ◽  
Gary D. Powney ◽  
Ben Collen ◽  
Richard D. Gregory ◽  
...  

Ecology ◽  
2003 ◽  
Vol 84 (1) ◽  
pp. 242-251 ◽  
Author(s):  
Raphaël Pélissier ◽  
Pierre Couteron ◽  
Stéphane Dray ◽  
Daniel Sabatier

Author(s):  
Damiano Oldoni ◽  
Quentin Groom ◽  
Peter Desmet

The digital era has brought about an impressive increase in the volume of published species occurrence data. Research infrastructures such as the Global Biodiversity Information Facility (GBIF), the digitization of legacy data, and the use of mobile applications have all played a role in this transition. More data implies, unavoidably, more heterogeneity at multiple levels as a result of the different methods and standards used to collect data. Data standardization and aggregation help to reduce this heterogeneity. Furthermore, intermediate data products that can be used for activities such as mapping, modeling and monitoring improve the repeatability and reproducibility of biodiversity research (Kissling et al. 2017). Occurrences can be defined as events in a three-dimensional space where the dimensions are taxonomic (what), temporal (when) and spatial (where). They are then aggregated into what we coined occurrence cube (Fig. 1). The taxonomic dimension is categorical. Research infrastructures like GBIF use a taxonomic backbone, thus making data aggregation at species level or higher rank relatively easy. The temporal dimension is a continuum and the temporal uncertainty is usually lower than the typical aggregation span, typically a year. Regarding the spatial dimension, occurrences are typically filtered to remove those with too large an uncertainty to fit the grid scheme being used. Meaning that the spatial uncertainty is largely unused. We developed a method to take into account this spatial uncertainty while aggregating data. In particular, we state that an occurrence is spatially representable as a closed plane figure such as a circle, hexagon or square, never as the geometric centre (centroid) of it. As for GBIF occurrence data, the coordinateUncertaintyInMeters is defined as the radius describing the smallest circle containing the whole of the location (see Darwin Core standard). So, spatially speaking, we refer to occurrences as circles, even if the method described below is general. After harvesting the occurrence data and providing a data quality assessment (e.g. removing occurrences without coordinates or with suspicious coordinates) we can assign occurrences to a reference grid such as the European reference grid of the European Environment Agency (EEA) at 1 km scale. In this spatial aggregation we randomly choose a point within the occurrence circle and assign it to the grid cell in which it is contained. We can aggregate further by time (e.g. by year) and taxonomy (e.g. by species), where aggregating means counting how many occurrences are in each specific taxonomic-spatial-temporal unit. The analogy with geometry goes further: the occurrence cube can, as any cube, be projected on an orthogonal plane by aggregating along one of the three dimensions. In particular, projecting the cube on the taxonomic and temporal dimensions can be done by adding up the number of occurrences, or counting the number of occupied cells, thus estimating the area of occupancy. The occurrence cube paradigm has been developed within the Tracking Invasive Alien Species (TrIAS) project (Vanderhoeven et al. 2017) following Open Science and FAIR principles. We created and published occurrence cubes at the species level for Belgium and Italy (Oldoni et al. 2020b) and the occurrence cubes for non-native taxa in Belgium and Europe (Oldoni et al. 2020a).


Author(s):  
Scott A Chamberlain ◽  
Carl Boettiger

Background. The number of individuals of each species in a given location forms the basis for many sub-fields of ecology and evolution. Data on individuals, including which species, and where they're found can be used for a large number of research questions. Global Biodiversity Information Facility (hereafter, GBIF) is the largest of these. Programmatic clients for GBIF would make research dealing with GBIF data much easier and more reproducible. Methods. We have developed clients to access GBIF data for each of the R, Python, and Ruby programming languages: rgbif, pygbif, gbifrb. Results. For all clients we describe their design and utility, and demonstrate some use cases. Discussion. Programmatic access to GBIF will facilitate more open and reproducible science - the three GBIF clients described herein are a significant contribution towards this goal.


Author(s):  
Gerald Guala

Biodiversity Information Serving Our Nation (BISON - bison.usgs.gov) is the US Node application for the Global Biodiversity Information Facility (GBIF) and the most comprehensive source of species occurrence data for the United States of America. It currently contains more than 460 million records and provides significant augmentation and integration of US occurrence data in terrestrial, marine and freshwater systems. Publicly released in 2013, BISON has generated a large community of stakeholders and they have passed on a lot of questions over the years through email ([email protected]), presentations and other means. In this presentation, some of the most common questions will be addressed in detail. For example: why all BISON data isn't in GBIF; how is BISON different from GBIF; what is the relationship between BISON and other US providers to GBIF; and what is the exact role of the Integrated Taxonomic Information System (ITIS - www.itis.gov) in BISON.


Sign in / Sign up

Export Citation Format

Share Document