Theoretical determination of equivalent circuit parameters for natural single-phase unidirectional surface acoustic wave transducers

1995 ◽  
Vol 78 (9) ◽  
pp. 1-11
Author(s):  
Kiyoshi Inagawa ◽  
Koji Hasegawa ◽  
Masanori Koshiba
2010 ◽  
Vol 47 (1) ◽  
pp. 86-93
Author(s):  
Saurabh Kumar Mukerji ◽  
Moleykutty George

An augmented short-circuit test is described for the determination of equivalent-circuit parameters of single-phase transformers with large series-branch impedances. This test may be conducted at rated currents with the transformer connected to a reduced voltage supply. Thus harmonics in current and voltage waves are negligible. This test is therefore free from harmonics-associated errors. Based on test results, phasor equations are found which give formulae for the equivalent-circuit parameters with series-branch impedance split into low- and high-voltage components.


2002 ◽  
Vol 41 (Part 1, No. 5B) ◽  
pp. 3489-3493
Author(s):  
Hideaki Nakahata ◽  
Akihiro Hachigo ◽  
Satoshi Fujii ◽  
Shinichi Shikata

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 303
Author(s):  
Giovanni Gugliandolo ◽  
Zlatica Marinković ◽  
Giuseppe Campobello ◽  
Giovanni Crupi ◽  
Nicola Donato

Nowadays, surface acoustic wave (SAW) resonators are attracting growing attention, owing to their widespread applications in various engineering fields, such as electronic, telecommunication, automotive, chemical, and biomedical engineering. A thorough assessment of SAW performance is a key task for bridging the gap between commercial SAW devices and practical applications. To contribute to the accomplishment of this crucial task, the present paper reports the findings of a new comparative study that is based on the performance evaluation of different commercial SAW resonators by using scattering (S-) parameter measurements coupled with a Lorentzian fitting and an accurate modelling technique for the straightforward extraction of a lumped-element equivalent-circuit representation. The developed investigation thus provides ease and reliability when choosing the appropriate commercial device, depending on the requirements and constraints of the given sensing application. This paper deals with the performance evaluation of commercial surface acoustic wave (SAW) resonators by means of scattering (S-) parameter measurements and an equivalent-circuit model extracted using a reliable modeling procedure. The studied devices are four TO-39 packaged two-port resonators with different nominal operating frequencies: 418.05, 423.22, 433.92, and 915 MHz. The S-parameter characterization was performed locally around the resonant frequencies of the tested SAW resonators by using an 8753ES Agilent vector network analyzer (VNA) and a home-made calibration kit. The reported measurement-based study has allowed for the development of a comprehensive and detailed comparative analysis of the performance of the investigated SAW devices. The characterization and modelling procedures are fully automated with a user-friendly graphical user interface (GUI) developed in the Python environment, thereby making the experimental analysis faster and more efficient.


Sign in / Sign up

Export Citation Format

Share Document