Difference in response of water use to evaporative demand for codominant diffuse-porous versus ring-porous tree species under N addition in a temperate forest

Ecohydrology ◽  
2017 ◽  
Vol 10 (4) ◽  
pp. e1829 ◽  
Author(s):  
Lei Ouyang ◽  
Ping Zhao ◽  
Liwei Zhu ◽  
Zhenzhen Zhang ◽  
Xiuhua Zhao ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 100
Author(s):  
Sayaka Takahashi ◽  
Erina Takahashi

To discuss the diversity of morphological traits and life strategies of trees, the functional relationship between leaf expansion and vessel formation must be clarified. We compared the temporal relationship among tree species with different leaf habits and vessel arrangements. Twigs, leaves, and trunk core samples were periodically acquired from 35 sample trees of nine species in a temperate forest in Japan. We quantitatively estimated leaf expansion using a nonlinear regression model and observed thin sections of twigs and trunks with a light microscope. Almost all of the first-formed vessels in twigs, which formed adjacent to the annual ring border, were lignified with a leaf area between 0% and 70% of the maximum in all species. The first-formed vessels in trunks lignified between 0% and 95% of the maximum leaf area in ring-porous deciduous Quercus serrata and ring-(radial-)porous evergreen Castanopsis cuspidate. Their lignification occurred earlier than in diffuse-porous deciduous Liquidambar styraciflua, diffuse-porous evergreen Cinnamomum camphora and Symplocos prunifolia, and radial-porous evergreen Quercus glauca and Quercus myrsinifolia. The timing varied in semi-ring-porous deciduous Acanthopanax sciadophylloides and diffuse-porous evergreen Ilex pedunculosa. The observed differences in the timing of vessel formation after leaf appearance were reflected in their differing vessel porosities and were connected to the different life strategies among tree species.


2013 ◽  
Vol 55 (2) ◽  
pp. 261-275 ◽  
Author(s):  
Takeshi Torimaru ◽  
Shinji Akada ◽  
Kiyoshi Ishida ◽  
Shuichi Matsuda ◽  
Machiko Narita

2010 ◽  
Vol 260 (4) ◽  
pp. 456-465 ◽  
Author(s):  
Isabel Martínez ◽  
Thorsten Wiegand ◽  
Fernando González-Taboada ◽  
José Ramón Obeso

HortScience ◽  
2018 ◽  
Vol 53 (12) ◽  
pp. 1784-1790 ◽  
Author(s):  
Dalong Zhang ◽  
Yuping Liu ◽  
Yang Li ◽  
Lijie Qin ◽  
Jun Li ◽  
...  

Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document