Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with β2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association

1988 ◽  
Vol 18 (5) ◽  
pp. 801-810 ◽  
Author(s):  
Jacques J. Neefjes ◽  
Hidde L. Ploegh
1985 ◽  
Vol 101 (2) ◽  
pp. 540-547 ◽  
Author(s):  
L Severinsson ◽  
P A Peterson

Class I transplantation antigens form complexes with a virus protein encoded in the early region E3 of the adenovirus-2 genome. The interaction between this viral glycoprotein, E19, and nascent human class I antigens has been examined by microinjecting purified mRNA into Xenopus laevis oocytes. Both E19 and the two class I antigen subunits, the heavy chain and beta 2-microglobulin (beta 2M), were efficiently translated. The heavy chains did not become terminally glycosylated, as monitored by endoglycosidase H digestion, and were not expressed on the oocyte surface unless they were associated with beta 2M. The E19 protein did not become terminally glycosylated, and we failed to detect this viral protein on the surface of the oocytes. Co-translation of heavy chain and E19 mRNA demonstrated that the two proteins associate intracellularly. However, neither protein appeared to be transported to the trans-Golgi compartment. Similar observations were made in adenovirus-infected HeLa cells. Heavy chains bound to beta 2M became terminally glycosylated in oocytes in the presence of low concentrations of E19. At high concentrations of the viral protein, no carbohydrate modifications and no cell surface expression of class I antigens were apparent. Thus, beta 2M and E19 have opposite effects on the intracellular transport of the heavy chains. These data suggest that adenovirus-2 may impede the cell surface expression of class I antigens to escape immune surveillance.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3738-3738
Author(s):  
Yoshitaka Zaimoku ◽  
Sharon D. Adams ◽  
Bhavisha A Patel ◽  
Audrey Ai Chin Lee ◽  
Sachiko Kajigaya ◽  
...  

Clonal hematopoiesis associated with loss of HLA class I alleles due to somatic mutations and/or 6p loss of heterozygosity (LOH) is frequent in immune aplastic anemia (AA). HLA-B*40:02 is more likely to be involved in HLA loss in Japanese AA patients, suggesting a role for this allele in immune pathophysiology (Zaimoku Y et al, Blood 2017). Mutations in non-B*40:02 HLA class I alleles have been reported in a limited number of patients from the United States (Babushok D et al, Blood Adv 2017) and Japan (Mizumaki H et al, 60th ASH meeting), but their prevalence and clinical significance are not well characterized. We investigated somatic mutations of HLA class I alleles, HLA allele frequencies, and their correlations with outcomes of therapy in a total of 532 AA patients, aged 2 years or older, treated on various Hematology Branch protocols (clinicaltrials.gov NCTs 00001964, 00061360, 00195624, 00260689, 00944749, 01193283, and 01623167). HLA allele-lacking (HLA-) monocytes from cryopreserved peripheral blood mononuclear cells were screened by flow cytometry after staining with allele-specific monoclonal antibodies for HLA-A and/or HLA-B (HLA-flow) in 172 AA patients. HLA- monocytes accounting for 0.5% to 100% (median 9.5%) of total monocytes were detected in 49 (28%) of the 172 patients and in 59 (15%) of 382 alleles analyzed (Figure 1). Loss of cell surface expression was frequent for HLA-B14 (46%), B27 (33%), B49 (33%), A68 (26%), A2 (23%), B40 (21%), and B8 (21%). One percent to 60% (median, 8.9%) of glycosylphosphatidylinositol-linked protein-negative (GPI-) monocytes were also present in 43% (21 of 49) of the patients with HLA- monocytes, but GPI- clones had normal HLA cell surface expression. Deep sequencing of HLA-A, HLA-B and HLA-C on sorted HLA- and HLA+GPI+ monocytes was performed in 42 of the 48 patients from whom adequate cells were available. Somatic mutations and/or LOH corresponding to the lacking alleles were detected in all 42 cases (Figure 1): 9 had both somatic mutations and LOH, 20 had somatic mutations only, and 13 had LOH only. Among the 13 patients who showed only LOH in the absent allele, 6 had somatic mutations in other alleles of HLA+ monocytes that was not analyzable of HLA expression, and 2 had a breakpoint of LOH between HLA-A and HLA-C, leading to loss of a single HLA-A allele. Somatic mutations or LOH involving only one allele were present in 37 patients among 6 HLA-A alleles (in 02:01 [7 patients], 02:05 [1], 02:06 [3], 02:11 [1], 68:01 [2], 68:02 [2]) and 10 HLA-B alleles (07:02 [1], 08:01 [4], 14:01 [1], 14:02 [7], 27:05 [1], 35:02 [1], 35:05 [1], 40:01 [1], 40:02 [3], 45:01 [1]), but were not found in HLA-C alleles. HLA allele frequencies in AA patients, including 271 white Americans, 120 African-Americans, and 99 Hispanics and Latinos, were compared with ethnicity-matched individuals in bone marrow donor datasets of the National Marrow Donor Program, and underwent random-effects meta-analyses. HLA-B*07, B*14, and B*40 were overrepresented in AA, while A*02, A*68, and B*08 frequencies were similar to those of healthy donors (Figure 2). In 164 severe AA patients who were initially treated with horse antithymocyte globulin (hATG), cyclosporine, and eltrombopag between 2012 and 2018, 36 and 79 were positive and negative for HLA- monocytes, respectively, and 49 were not tested by HLA-flow. There was no significant difference in overall and complete response rates at six months among the three groups (Figure 3). Clonal evolution, defined as acquisition of abnormal bone marrow cytogenetics or morphology, especially high-risk evolution to chromosome 7 abnormalities, complex cytogenetics, or morphological MDS/AML, tended to be more frequent in patients with HLA- monocytes, compared to the other two groups, but the difference did not reach statistical significance. Clinical outcomes were also assessed according to the presence of specific HLA alleles in 400 severe AA patients who were treated with hATG-based initial immunosuppressive therapy from 2000 to 2018: there was no significant differences in probabilities of response and clonal evolution according to the alleles associated with somatic mutations. Our study revealed that somatic mutations in HLA genes in AA are broadly distributed, but some alleles are preferentially affected. Inconsistent with previous studies, we found that outcomes of therapy did not significantly correlate with HLA gene mutations or with distinct HLA alleles. Disclosures No relevant conflicts of interest to declare.


1992 ◽  
Vol 176 (4) ◽  
pp. 1083-1090 ◽  
Author(s):  
M Ulbrecht ◽  
J Kellermann ◽  
J P Johnson ◽  
E H Weiss

The assembly of the classical, polymorphic major histocompatibility complex class I molecules in the endoplasmic reticulum requires the presence of peptide ligands and beta 2-microglobulin (beta 2m). Formation of this trimolecular complex is a prerequisite for efficient transport to the cell surface, where presented peptides are scanned by T lymphocytes. The function of the other class I molecules is in dispute. The human, nonclassical class I gene, HLA-E, was found to be ubiquitously transcribed, whereas cell surface expression was difficult to detect upon transfection. Pulse chase experiments revealed that the HLA-E heavy chain in transfectants, obtained with the murine myeloma cell line P3X63-Ag8.653 (X63), displays a significant reduction in oligosaccharide maturation and intracellular transport compared with HLA-B27 in corresponding transfectants. The accordingly low HLA-E cell surface expression could be significantly enhanced by either reducing the culture temperature or by supplementing the medium with human beta 2m, suggesting inefficient binding of endogenous peptides to HLA-E. To analyze whether HLA-E binds peptides and to identify the corresponding ligands, fractions of acid-extracted material from HLA-E/X63 transfectants were separated by reverse phase HPLC and were tested for their ability to enhance HLA-E cell surface expression. Two fractions specifically increased the HLA class I expression on the HLA-E transfectant clone.


2006 ◽  
Vol 177 (5) ◽  
pp. 3108-3115 ◽  
Author(s):  
Mizuho Kajikawa ◽  
Tomohisa Baba ◽  
Utano Tomaru ◽  
Yutaka Watanabe ◽  
Satoru Koganei ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Brogan Yarzabek ◽  
Anita J Zaitouna ◽  
Eli Olson ◽  
Gayathri N Silva ◽  
Jie Geng ◽  
...  

The highly polymorphic human leukocyte antigen (HLA) class I molecules present peptide antigens to CD8+ T cells, inducing immunity against infections and cancers. Quality control mediated by peptide loading complex (PLC) components is expected to ensure the cell surface expression of stable peptide-HLA class I complexes. This is exemplified by HLA-B*08:01 in primary human lymphocytes, with both expression level and half-life at the high end of the measured HLA-B expression and stability hierarchies. Conversely, low expression on lymphocytes is measured for three HLA-B allotypes that bind peptides with proline at position 2, which are disfavored by the transporter associated with antigen processing. Surprisingly, these lymphocyte-specific expression and stability differences become reversed or altered in monocytes, which display larger intracellular pools of HLA class I than lymphocytes. Together, the findings indicate that allele and cell-dependent variations in antigen acquisition pathways influence HLA-B surface expression levels, half-lives and receptivity to exogenous antigens.


Sign in / Sign up

Export Citation Format

Share Document