Structural comparison of α/β and γ/δ T cell receptor-CD3 complexes reveals identical subunit interactions but distinct cross-linking patterns of T cell receptor chains

1990 ◽  
Vol 20 (9) ◽  
pp. 2105-2111 ◽  
Author(s):  
Joost van Neerven ◽  
John E. Coligan ◽  
Frits Koning
2004 ◽  
Vol 279 (50) ◽  
pp. 52762-52771 ◽  
Author(s):  
Xikui K. Liu ◽  
Xin Lin ◽  
Sarah L. Gaffen

The biological activities of the inflammatory cytokine interleukin (IL)-17 have been widely studied. However, comparatively little is known about how IL-17 expression is controlled. Here, we examined the basis for transcriptional regulation of the human IL-17 gene. IL-17 secretion was induced in peripheral blood mononuclear cells following anti-CD3 cross-linking to activate the T cell receptor (TCR), and costimulatory signaling through CD28 strongly enhanced CD3-induced IL-17 production. To definecis-acting elements important for IL-17 gene regulation, we cloned 1.25 kb of genomic sequence upstream of the transcriptional start site. This putative promoter was active in Jurkat T cells following CD3 and CD28 cross-linking, and its activity was inhibited by cyclosporin A and MAPK inhibitors. The promoter was also active in Hut102 T cells, which we have shown to secrete IL-17 constitutively. Overexpression of nuclear factor of activated T cells (NFAT) or Ras enhanced IL-17 promoter activity, and studies in Jurkat lines deficient in specific TCR signaling pathways provided supporting evidence for a role for NFAT. To delineate the IL-17 minimal promoter, we created a series of 5′ truncations and identified a region between -232 and -159 that was sufficient for inducible promoter activity. Interestingly, two NFAT sites were located within this region, which bound to NFATc1 and NFATc2 in nuclear extracts from Hut102 and Jurkat cells. Moreover, mutations of these sites dramatically reduced both specific DNA binding and reporter gene activity, and chromatin immunoprecipitation assays showed occupancy of NFAT at this regionin vivo. Together, these data show that NFAT is the crucial sensor of TCR signaling in the IL-17 promoter.


Nature ◽  
1989 ◽  
Vol 341 (6243) ◽  
pp. 619-624 ◽  
Author(s):  
Michael L. Dustin ◽  
Timothy A. Springer

Science ◽  
1991 ◽  
Vol 253 (5021) ◽  
pp. 778-781 ◽  
Author(s):  
L. Turka ◽  
D. Schatz ◽  
M. Oettinger ◽  
J. Chun ◽  
C Gorka ◽  
...  

1993 ◽  
Vol 178 (5) ◽  
pp. 1693-1700 ◽  
Author(s):  
A Sarin ◽  
D H Adams ◽  
P A Henkart

The hypothesis that cytoplasmic proteases play a functional role in programmed cell death was tested by examining the effect of protease inhibitors on the T cell receptor-mediated death of the 2B4 murine T cell hybridoma and activated T cells. The cysteine protease inhibitors trans-epoxysuccininyl-L-leucylamido-(4-guanidino) butane (E-64) and leupeptin, the calpain selective inhibitor acetyl-leucyl-leucyl-normethional, and the serine protease inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, all showed dose-dependent blocking of the 2B4 death response triggered by the T cell receptor complex and by anti-Thy-1. These protease inhibitors enhanced rather than inhibited IL-2 secretion triggered by T cell receptor cross-linking, showing that they did not act by preventing signal transduction. Growth inhibition induced by cross-linking the 2B4 T cell receptor, measured by inhibition of thymidine incorporation, was not generally blocked by these protease inhibitors. All five of these protease inhibitors enhanced rather than blocked 2B4 cell death triggered by dexamethasone, an agent previously shown to have a death pathway antagonistic with that of the TCR. 2B4 cytolysis by the cytotoxic agents staphylococcal alpha-toxin and dodecyl imidazole, and that caused by hypotonic conditions, was not significantly affected by the five protease inhibitors tested. The selected protease inhibitors blocked both the apoptotic nuclear morphology changes and DNA fragmentation induced by T cell receptor cross-linking, and enhanced both these properties induced by dexamethasone in 2B4 cells. The T cell receptor-induced death of activated murine lymph node T cells and human peripheral blood CD4+ T cells was blocked by both cysteine and serine protease inhibitors, showing that the protease-dependent death pathway also operates in these systems.


2019 ◽  
Vol 70 (1) ◽  
pp. 437-450 ◽  
Author(s):  
Raphael A. Clynes ◽  
John R. Desjarlais

Bispecific antibodies that recruit and redirect T cells to attack tumor cells have tremendous potential for the treatment of various malignancies. In general, this class of therapeutics, known as CD3 bispecifics, promotes tumor cell killing by cross-linking a CD3 component of the T cell receptor complex with a tumor-associated antigen on the surface of the target cell. Importantly, this mechanism does not rely on a cognate interaction between the T cell receptor and a peptide:HLA complex, thereby circumventing HLA (human leukocyte antigen) restriction. Hence, CD3 bispecifics may find a key role in addressing tumors with low neoantigen content and/or low inflammation, and this class of therapeutics may productively combine with checkpoint blockade. A wide array of formats and optimization approaches has been developed, and a wave of CD3 bispecifics is proceeding into human clinical trials for a range of indications, with promising signs of therapeutic activity.


Sign in / Sign up

Export Citation Format

Share Document