Synthesis of Carbon-Branched Sugars Involving an Unprecedented 1,5- or 1,6-Alkyl Transposition Reaction

2019 ◽  
Vol 2019 (29) ◽  
pp. 4752-4756
Author(s):  
Perali Ramu Sridhar ◽  
Boddu Umamaheswara Rao ◽  
Gadi Madhusudhan Reddy
1976 ◽  
Vol 17 (30) ◽  
pp. 2621-2622 ◽  
Author(s):  
Arata Yasuda ◽  
Hisashi Yamamoto ◽  
Hitosi Nozaki

Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1087-1095 ◽  
Author(s):  
Allan R Lohe ◽  
David T Sullivan ◽  
Daniel L Hartl

Abstract We have studied the Mos1 transposase encoded by the transposable element mariner. This transposase is a member of the “D,D(35)E” superfamily of proteins exhibiting the motif D,D(34)D. It is not known whether this transposase, or other eukaryote transposases manifesting the D,D(35)E domain, functions in a multimeric form. Evidence for oligomerization was found in the negative complementation of Mos1 by an EMS-induced transposase mutation in the catalytic domain. The transposase produced by this mutation has a glycine-to-arginine replacement at position 292. The G292R mutation strongly interferes with the ability of wild-type transposase to catalyze excision of a target element. Negative complementation was also observed for two other EMS mutations, although the effect was weaker than observed with G292R. Results from the yeast two-hybrid system also imply that Mos1 subunits interact, suggesting the possibility of subunit oligomerization in the transposition reaction. Overproduction of Mos1 subunits through an hsp70 promoter also inhibits excision of the target element, possibly through autoregulatory feedback on transcription or through formation of inactive or less active oligomers. The effects of both negative complementation and overproduction may contribute to the regulation of mariner transposition.


2012 ◽  
Vol 45 (4) ◽  
pp. 493-521 ◽  
Author(s):  
Fred Dyda ◽  
Michael Chandler ◽  
Alison Burgess Hickman

AbstractDNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.


2001 ◽  
Vol 183 (8) ◽  
pp. 2476-2484 ◽  
Author(s):  
Yasuyuki Shiga ◽  
Yasuhiko Sekine ◽  
Yasunobu Kano ◽  
Eiichi Ohtsubo

ABSTRACT IS1, the smallest active transposable element in bacteria, encodes a transposase that promotes inter- and intramolecular transposition. Host-encoded factors, e.g., histone-like proteins HU and integration host factor (IHF), are involved in the transposition reactions of some bacterial transposable elements. Host factors involved in the IS1 transposition reaction, however, are not known. We show that a plasmid with an IS1 derivative that efficiently produces transposase did not generate miniplasmids, the products of intramolecular transposition, in mutants deficient in a nucleoid-associated DNA-binding protein, H-NS, but did generate them in mutants deficient in histone-like proteins HU, IHF, Fis, and StpA. Nor did IS1 transpose intermolecularly to the target plasmid in the H-NS-deficient mutant. The hns mutation did not affect transcription from the indigenous promoter of IS1 for the expression of the transposase gene. These findings show that transpositional recombination mediated by IS1 requires H-NS but does not require the HU, IHF, Fis, or StpA protein in vivo. Gel retardation assays of restriction fragments of IS1-carrying plasmid DNA showed that no sites were bound preferentially by H-NS within the IS1 sequence. The central domain of H-NS, which is involved in dimerization and/or oligomerization of the H-NS protein, was important for the intramolecular transposition of IS1, but the N- and C-terminal domains, which are involved in the repression of certain genes and DNA binding, respectively, were not. The SOS response induced by the IS1 transposase was absent in the H-NS-deficient mutant strain but was present in the wild-type strain. We discuss the possibility that H-NS promotes the formation of an active IS1 DNA-transposase complex in which the IS1 ends are cleaved to initiate transpositional recombination through interaction with IS1 transposase.


1983 ◽  
Vol 105 (7) ◽  
pp. 1753-1760 ◽  
Author(s):  
Hidetsugu Tanaka ◽  
Toshio Matsushita ◽  
Kichisuke Nishimoto

Cell ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 883-892 ◽  
Author(s):  
Ralph R. Isberg ◽  
Aili L. Lazaar ◽  
Michael Syvanen

2019 ◽  
Vol 4 (26) ◽  
pp. 7759-7765 ◽  
Author(s):  
Efraín Rodríguez‐Alba ◽  
Lázaro Huerta ◽  
Alejandra Ortega ◽  
Guillermina Burillo

Sign in / Sign up

Export Citation Format

Share Document