Cellular electrophoretic mobility data: A first approach to a database

1997 ◽  
Vol 18 (7) ◽  
pp. 1109-1119 ◽  
Author(s):  
George G. Slivinsky ◽  
Wesley C. Hymer ◽  
Johann Bauer ◽  
Dennis R. Morrison
2020 ◽  
Vol 4 (2) ◽  
pp. 20 ◽  
Author(s):  
Marco Galli ◽  
Szilárd Sáringer ◽  
István Szilágyi ◽  
Gregor Trefalt

Critical coagulation concentration (CCC) is a key parameter of particle dispersions, since it provides the threshold limit of electrolyte concentrations, above which the dispersions are destabilized due to rapid particle aggregation. A computational method is proposed to predict CCC values using solely electrophoretic mobility data without the need to measure aggregation rates of the particles. The model relies on the DLVO theory; contributions from repulsive double-layer forces and attractive van der Waals forces are included. Comparison between the calculated and previously reported experimental CCC data for the same particles shows that the method performs well in the presence of mono and multivalent electrolytes provided DLVO interparticle forces are dominant. The method is validated for particles of various compositions, shapes, and sizes.


1983 ◽  
Vol 36 (6) ◽  
pp. 511 ◽  
Author(s):  
DW Cooper ◽  
PA Woolley ◽  
GM Maynes ◽  
FS Sherman ◽  
WE Poole

An investigation of genetic variation in the electrophoretic mobility of the enzyme a-galactosidase A (EC 3.2.1.22) has been carried out for 33 species of Australian metatherian (marsupial) mammals. The results are compatible with the enzyme being sex-linked in macropodids (kangaroos and wallabies) and probably in dasyurids (marsupial 'mice', etc.), as it is in eutherian (placental) mammals. The results also suggest that the mode of dosage compensation for this locus is the same as for other sexlinked loci in kangaroos, i.e. paternal X inactivation, rather than the random X inactivation system of eutherian mammals. The bearing of the enzyme mobility data on phylogenetic relationships among macropodid species is discussed.


1994 ◽  
Vol 50 (3) ◽  
pp. 249-254 ◽  
Author(s):  
Yoshinori Nakano ◽  
Kimiko Makino ◽  
Hiroyuki Ohshima ◽  
Tamotsu Kondo

Genetics ◽  
1977 ◽  
Vol 87 (4) ◽  
pp. 717-742
Author(s):  
Gary Cobbs ◽  
Satya Prakash

ABSTRACT The relationship between charge changes and electrophoretic mobility changes is investigated experimentally. The charge of several proteins is altered by reaction with small molecules of known structure and the change in electrophoretic mobility is measured. The method of Ferguson plots is used to separate charge and shape components of mobility differences. The average effect of an amino acid charge change on the mobility of the esterase-51.00 allele of Drosophila pseudoobscura is estimated to be 0.046. This estimate is then used to apply the step model of Ohta and Kimura (1973) to electrophoretic mobility data for the esterase-5 locus of D. pseudoobscura and D. miranda. The variation in electrophoretic mobility at this locus was found to be in agreement with the predictions of the step model.


1978 ◽  
Vol 40 (02) ◽  
pp. 288-301 ◽  
Author(s):  
P Meucci ◽  
I R Peake ◽  
A L Bloom

SummaryFactor VIII-related activities have been studied in platelet fractions in order to try to reconcile the conflicting findings of other workers, and to extend the studies. In platelets from 16 normal subjects procoagulant factor VIII was not detected. The amount of factor VIII-related antigen (FVIIIR: AG) in the cytosol per mg of protein was about twice that in the membrane fraction and about ten times that in the debris fraction. There was no significant difference between the amount of FVIIIR: AG and ristocetin cofactor (RistCof) activity in each fraction. The findings in haemophilic platelets were similar. In von Willebrand’s disease (vWd) one serverely affected patient had no detectable factor VIII related activities in any platelet fraction. In 5 patients with intermediate vWd results were normal. In a further 5, with more prolonged bleeding times, no FVIIIR: RistCof was detected in platelets, despite a normal amount of FVIIIR: AG in the cytosol and debris. The electrophoretic mobility of cytosol FVIIIR: AG was increased in all normals and patients, while that in the membrane and debris fractions had normal mobility. Cytosol FVIIIR: AG eluted later than normal FVIIIR: AG on gel filtration on Sepharose 2B, and also showed reduced antibody binding in an immunoradiometric assay. Precipitation of FVIIIR: AG by concanavalin A was incomplete in all platelet fractions from normals, and even more reduced in vWd platelet fractions. The results suggest the possibility of two types of platelet FVIIIR: AG.A factor VIII-related antigen was shown to be associated with normal washed platelets by immunofluorescence techniques (Bloom et al. 1973). Since then, several studies have been reported on the localisation of factor VIII related antigen (FVIIIR: AG), factor VIII procoagulant activity (FVIII: C) and factor VIII related ristocetin cofactor activity (FVIIIR: RistCof) within the platelets. Initially, Howard et al. (1974) indicated that FVIIIR: AG was firmly bound to the platelet membrane, and noted that in lysed platelets the level of FVIIIR: AG as measured by electroimmunodiffusion was higher than that in whole platelet suspensions. However, further studies by Nachman and Jaffe (1975) showed that FVIIIR: AG was also present to a considerable extent in the granules, and they detected none in the platelet cytosol. Bouma and colleagues (1975) were, however, able to find FVIIIR: AG and FVIIIR: RistCof in the cytosol upon freezing and thawing platelets. This FVIIIR: AG had an electrophoretic mobility comparable to that of normal plasma. They also noted that platelets which were air dried apparently had a granular FVIIIR:AG localisation by immunfluorescence; however, intact platelets in suspension did not stain by this method.Recently Ruggeri et al. (1977) and Sultan et al. (1977) have also found FVIIIR: AG in the cytosol, and the former authors reported it to have increased electrophoretic mobility when compared to normal plasma FVIIIR:AG. Results concerning the localisation of FVIIIR: AG in normal platelets have thus been conflicting. Similarly, in the few reports available concerning platelet FVIIIR: AG in von Willibrand’s disease variable results have also been obtained (Ruggeri et al. 1977, Howard et al. 1974, Shearn et al. 1974 and Bouma et al. 1975).In this study we report on the localisation of factor VIII-related activities in normal, haemophilic and von Willebrand’s disease platelets using available standard techniques as well as precipitation of FVIIIR: AG with the plant lectin concanavalin A, a procedure which has been shown to detect abnormal forms of FVIIIR:AG in certain types of von Willebrand’s disease (Peake and Bloom 1977).


Sign in / Sign up

Export Citation Format

Share Document