Acceleration response modification factors for nonstructural components attached to inelastic moment-resisting frame structures

2007 ◽  
Vol 36 (14) ◽  
pp. 2189-2210 ◽  
Author(s):  
Ragunath Sankaranarayanan ◽  
Ricardo A. Medina
2021 ◽  
Vol 242 ◽  
pp. 112532
Author(s):  
Zhenhua Huang ◽  
Liping Cai ◽  
Yashica Pandey ◽  
Yong Tao ◽  
William Telone

Author(s):  
Ali Ruzi Özuygur

Seismic base isolation has been successfully used to protect structural and nonstructural components from the damaging effects of earthquakes by reducing floor accelerations and inter-story drifts for decades. The level of floor acceleration is a key issue in the protection of acceleration-sensitive nonstructural components. In this paper, floor acceleration performance of seismically isolated buildings with different lateral load resisting systems such as moment resisting frame, dual system, moment resisting frame plus viscous wall dampers and dual system plus viscous wall dampers is investigated. Moreover, the effectiveness of supplemental viscous damping devices equipped in parallel with lead-rubber isolators is studied. It is inferred from the study that the most effective way of reducing floor accelerations is to provide more rigidity to the superstructure. Utilizing supplemental viscous dampers along with lead-rubber isolators having about 20% of effective damping ratio is meaningless or harmful in relation to floor acceleration and base shear.


2018 ◽  
Vol 763 ◽  
pp. 557-565
Author(s):  
Hiroyuki Tagawa ◽  
Gregory A. MacRae

Building structures around the world have been designed using various framing methods. In Japan, the two-way moment-resisting frame structure, which is designed as a 3D seismic frame with beams connected to the columns, with moment connections in both directions, is traditionally constructed. In contrast, in the United States and many other countries in high seismic regions, the one-way moment-resisting frame structure, which is designed as separate seismic and gravity frame structure with only a few expensive moment connections in seismic frames, is typically constructed. Structures with these different framing systems are likely to exhibit different seismic response and collapse mechanism when subjected to large earthquake excitation. However, the simulation up to complete collapse has almost not been conducted and safety margin to complete collapse of these different framing systems has not been sufficiently understood. In this study, seismic simulation of U.S. and Japanese type three-story steel moment-resisting frame structures is conducted using general-purpose finite element analysis program. Practical macro models used for the simulation are based on beam and shell elements. It is found that composite effects of floor slab accelerate column yielding in both U.S. and Japanese type steel frame structures and drift concentration may occur at relatively small ground motion level and eventually result in complete collapse.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Jizhi Su ◽  
Boquan Liu ◽  
Guohua Xing ◽  
Yudong Ma ◽  
Jiao Huang

The design philosophy of a strong-column weak-beam (SCWB), commonly used in seismic design codes for reinforced concrete (RC) moment-resisting frame structures, permits plastic deformation in beams while keeping columns elastic. SCWB frames are designed according to beam-to-column flexural capacity ratio requirements in order to ensure the beam-hinge mechanism during large earthquakes and without considering the influence of the beam-to-column stiffness ratio on the failure modes of global structures. The beam-to-column linear stiffness ratio is a comprehensive indicator of flexural stiffness, story height, and span. This study proposes limit values for different aseismic grades based on a governing equation deduced from the perspective of member ductility. The mathematical expression shows that the structural yielding mechanism strongly depends on parameters such as material strength, section size, reinforcement ratio, and axial compression ratio. The beam-hinge mechanism can be achieved if the actual beam-to-column linear stiffness ratio is smaller than the recommended limit values. Two 1/3-scale models of 3-bay, 3-story RC frames were constructed and tested under low reversed cyclic loading to verify the theoretical analysis and investigate the influence of the beam-to-column linear stiffness ratio on the structural failure patterns. A series of nonlinear dynamic analyses were conducted on the numerical models, both nonconforming and conforming to the beam-to-column linear stiffness ratio limit values. The test results indicated that seismic damage tends to occur at the columns in structures with larger beam-to-column linear stiffness ratios, which inhibits the energy dissipation. The dynamic analysis suggests that considering the beam-to-column linear stiffness ratio during the design of structures leads to a transition from a column-hinge mechanism to a beam-hinge mechanism.


Sign in / Sign up

Export Citation Format

Share Document