seismic base isolation
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 20)

H-INDEX

10
(FIVE YEARS 1)

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1340-1353
Author(s):  
Sudip Chowdhury ◽  
Arnab Banerjee ◽  
Sondipon Adhikari

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiuyun Zhu ◽  
Rong Pan ◽  
Jianbo Li ◽  
Gao Lin

PurposeIn recent years, three-dimensional (3D) seismic base isolation system has been studied extensively. This paper aims to propose a new 3D combined isolation bearing (3D-CIB) to mitigate the seismic response in both the horizontal and vertical directions.Design/methodology/approachThe new 3D-CIB composed of laminated rubber bearing coupled with combined disk spring bearing (CDSB) was proposed. Comprehensive analysis of constitution and theoretical derivation for 3D-CIB were presented. The advantage of CDSB is that the constitution can be flexibly adjusted according to the requirements of the bearing capacity and vertical stiffness. Hence, four different combinations of CDSB were designed for the 3D-CIB and employed to isolate nuclear reactor building. A comparative study of the seismic response in terms of seismic action, acceleration floor response spectra (FRS), peak acceleration and relative displacement response was carried out.Findings3D-CIB can effectively reduce seismic action, FRS and peak acceleration response of the superstructure in both the horizontal and vertical directions. Overall, the horizontal isolation effectiveness of 3D-CIB was slightly influenced by vertical stiffness. The decrease in the vertical stiffness of the 3D-CIB can reduce the vertical FRS and shift the peak values to a lower frequency. The vertical peak acceleration decreased with a decrease in the vertical stiffness. The superstructure exhibited a rocking effect during the earthquake, and the decrease in the vertical stiffness may increase the rocking of the superstructure.Originality/valueAlthough the advantage of 3D-CIB is that the vertical stiffness can be flexibly adjusted by different constitutions, the vertical stiffness should be designed by properly accounting for the balance between the isolation effectiveness and displacement response. This study of isolation effectiveness can provide the technical basis for the application of 3D-CIB into real engineering of nuclear power plants.


Author(s):  
Zeeshan Ahmad Babar

Abstract: The seismic design of the moment-resistant plastic frames is aimed at forcing the structure to respond to the strong action of the weak beam, in which plastic loops are expected to form into beams on the faces of the columns. The regions of the khang are described in detail in such a way that the output of longitudinal steel bars allows to dissipate the energy of the earthquake. If SE SMA is used as a reinforcement instead of steel in the right places of the hinges or in the basic insulation, it will not only be able to dissipate adequate seismic energy, but also restore its original shape after the seismic event. Due to the higher cost compared to the cost of other building materials, SMA longitudinal ribs can be used together with steel ribs in the articulated areas of the beams. Such BCJs can allow design engineers to design connections that show minor damage and mitigate joint repairs after an earthquake. Keywords: Seismic, base isolation, SMA, beam, column & joints


2021 ◽  
Vol 20 (3) ◽  
pp. 791-802
Author(s):  
Han Miao ◽  
Wang Yuandong ◽  
Du Hongkai ◽  
Cui Xiangdong

2021 ◽  
pp. 875529302098196
Author(s):  
Tansu Gökçe ◽  
Engin Orakdöğen ◽  
Ercan Yüksel

A novel seismic base isolation system has been developed for high-voltage (HV) porcelain post insulators. The seismic isolation device consists of two steel plates, four polyurethane springs, and a steel rod, which are low-cost components compared to the post insulators. Two alternative designs of the device are experimentally and numerically assessed in this article. A simple and robust numerical model consisting of linear line elements and nonlinear springs was generated, and subsequently validated using the experimental results. Incremental dynamic analyses (IDAs) were then performed to obtain fragility curves. Ten historical earthquake profiles, scaled to intensities between 0.1 and 2.0 g, were then applied to the numerical models. The fragility curves, generated according to the latest version of IEEE-693, demonstrate that the seismic isolation devices are highly effective in diminishing the base moment of the porcelain insulator. It should be noted that relatively large displacements at the top of the pole must be accounted for by ensuring adequate slackness in the flexible conductors.


2021 ◽  
Author(s):  
◽  
Ivan Banović

The problem under consideration is the earthquake impact on structures. The subject of the performed research is the efficiency of seismic base isolation using layers of predominantly natural materials below the foundation, as well as the development of a numerical model for seismic analysis of structures with such isolation. The aseismic layers below foundation are made of limestone sand - ASL-1, stone pebbles - ASL-2, and stone pebbles combined with layers of geogrid and geomembrane - ASL-3. The experimental research methodology is based on the use of shake-table and other modern equipment for dynamic and static testing of structures. Experiments were conducted on the basis of detailed research plan and program. Efficiency of the limestone sand layer - ASL-1 was tested on cantilever concrete columns, under seismic excitations up to failure, varying the sand thickness and intensity of seismic excitation. Influence of several layer parameters on the efficiency of stone pebble layer - ASL-2 was investigated. For each considered layer parameter, a rigid model M0 was exposed to four different accelerograms, with three levels of peak ground acceleration (0.2 g, 0.4 g and 0.6 g), while all other layer parameters were kept constant. On the basis of test results, the optimal pebble layer was adopted. Afterwards, the optimal ASL-2 efficiency was tested on various model parameters: stiffness (deformable models M1-M4), foundation size (small and large), excitation type (four earthquake accelerograms), and stress level in the model (elastic and up to failure). In the ASL-3 composite aseismic layer, the optimal ASL-2 is combined with a thin additional layer of sliding material (geogrid, geomembrane above limestone sand layer), in order to achieve greater efficiency of this layer than that of the ASL-2. A total of eleven different aseismic layers were considered. To determine the optimal ASL-3, the M0 model was used, like for the ASL-2. On the basis of test results, the optimal ASL-3 layer was adopted (one higher strength geogrid at the pebble layer top). The optimal ASL-3 is tested on various model parameters, analogous to the optimal ASL-2. A numerical model for reliable seismic analysis of concrete, steel, and masonry structures with seismic base isolation using ASL-2 was developed, with innovative constitutive model for seismic isolation. The model can simulate the main nonlinear effects of mentioned materials, and was verified on performed experimental tests. In relation to the rigid base - RB without seismic isolation, model based on the ASL-1 had an average reduction in seismic force and strain/stress by approximately 10% at lower PGA levels and approximately 14% at model failure. Due to the effect of sand calcification over time, the long-term seismic efficiency of such a layer is questionable. It was concluded that the aseismic layers ASL-2 and ASL-3 are not suitable for models of medium-stiff structure M3 and soft structure M4. In relation to the RB without seismic isolation, the M1 (very stiff structure) and M2 (stiff structure) based on the ASL-2 had an average reduction in seismic force and strain/stress by approximately 13% at lower PGA levels and approximately 25% at model failure. In relation to the RB without seismic isolation, the M1 and M2 based on the ASL-3 had an average reduction in seismic force and strain/stress by approximately 25% at lower PGA levels and approximately 34% at model failure. In relation to the RB without seismic isolation, the ASL-2 and ASL-3 did not result in major M1 and M2 model displacements, which was also favourable. It is concluded that the ASL-2 and especially ASL-3 have great potential for seismic base isolation of very stiff and stiff structures, as well as small bridges based on solid ground, but further research is needed. In addition, it was concluded that the developed numerical model has great potential for practical application. Finally, further verification of the created numerical model on the results of other experimental tests is needed, but also improvement of the developed constitutive models.


Sign in / Sign up

Export Citation Format

Share Document