Thermal characteristics of a volumetric solar absorption system

2013 ◽  
Vol 38 (5) ◽  
pp. 581-591 ◽  
Author(s):  
Osman K. Siddiqui ◽  
Bekir S. Yilbas
2014 ◽  
Vol 695 ◽  
pp. 797-800 ◽  
Author(s):  
Osamah Zaid Ahmed ◽  
Farid Nasir Ani

During the last few years, the awareness of the pollution and the global warming has dramatically increased which encourage the researchers around the world to find an alternative source of energy. One of the most efficient sources of energy is the solar energy especially for cooling and heating applications. This paper, described the simulation of a double-effect solar absorption system in Yemen using water lithium bromide solution as a working fluid. The system will be applied to a typical traditional house in Yemen. The performance of the system will be analyzed based on different high pressure generator temperature for the yearly solar radiation data. At higher pressure generator temperature, the results show a higher coefficient of performance of the system. This simulation also estimate high pressure generator heat transfer required to operate the system. As a result, the size of solar collector area and the cost of such system will be calculated.


2021 ◽  
Vol 877 (1) ◽  
pp. 012020
Author(s):  
Ahmed A Shahhath ◽  
Haroun A K Shahad ◽  
Alaa A Mahdi

Abstract In this paper, the effect of parameters of solar absorption system such as evaporator, absorber, condenser, generator temperatures and the mass of the solution on the evaporator cooling load and the coefficient of performance has been explained theoretically. The results show that, increasing of evaporator and condenser temperatures increase the evaporator cooling load, performance coefficient and the Ratio of Circulation while increasing the temperature of condenser and absorber decreases the evaporator cooling load, performance coefficient and the Circulation Ratio. In addition, increasing the solution mass increases the refrigeration power while the performance coefficient and the Circulation Ratio was constant at increasing the solution mass. The reached maximum cooling load was (1.932 kW) at 15 kg solution mass and 100 °C generator temperature, the maximum COP was 0.774 at (10 °C) temperature of evaporator and the peak Circulation Ratio was 0.3066 at (30 °C) temperature of absorber and (100 °C) temperature of generator.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Bhargav Pandya ◽  
Vinay Kumar ◽  
Jatin Patel ◽  
V. K. Matawala

This comprehensive investigation has been executed to compare the thermodynamic performance and optimization of LiCl–H2O and LiBr–H2O type absorption system integrated with flat-plate collectors (FPC), parabolic-trough collectors (PTC), evacuated-tube collectors (ETC), and compound parabolic collectors (CPC). A model of 10 kW is analyzed in engineering equation solver (ees) from thermodynamic perspectives. Solar collectors are integrated with a storage tank which fueled the LiCl–H2O and LiBr–H2O vapor absorption system to produce refrigeration at 7 °C in evaporator for Gujarat Region of India. The main objective includes the evaluation and optimization of critical performance and design parameters to exhibit the best working fluid pair and collector type. Optimum heat source temperature corresponding to energetic and exergetic aspects for LiCl–H2O pair is lower than that of LiBr–H2O pair for all collectors. Simulation shows that FPC has lowest capital cost, exergetic performance wise PTC is optimum, and ETC requires lowest collector area. On the basis of overall evaluation, solar absorption cooling systems are better to be powered by ETC with LiCl–H2O working fluid pair.


2012 ◽  
Vol 23 (2) ◽  
pp. 39-49 ◽  
Author(s):  
Bilsay Pastakkaya ◽  
Nurettin Yamankaradeniz ◽  
Omer Kaynakli ◽  
Salih Coskun ◽  
Recep Yamanakaradeniz

This study examines experimentally the cooling application of a solar absorption system with interior energy storage that uses two different auxiliary systems. The experiments were performed at Uludag University, Bursa, Turkey on the 3rd and 4th of August 2010 that had the approximately same average outdoor temperature, 31°C. A solar hot water was delivered via a 40 m2 array of flat plate solar collectors that drove a lithium chloride (LiCl) absorption heat pump with a cooling power peak of 20 kW. A solar-powered air conditioning system was designed for heating and cooling in a test room that had a total floor space of 30 m2. Chilled water produced in the evaporator was supplied to the fan coil units, and the heat of condensation and absorption was rejected by means of a wet cooling tower. An electric heater and an air source heat pump were used as auxiliary systems for the absorption cooling application for two different cases when the solar energy was insufficient. Temperature variations were recorded for the absorption machine components, the test room, and the outdoors. The cooling energy, thermal energy, and daily average coefficient of performance (COP) of the absorption system were calculated for two days. Solar absorption cooling was considered for two different auxiliary systems and is presented in this manuscript. The results showed that the daily average COP of the absorption system was 0.283 for Case 1 and 0.282 for Case 2. For both cases, the interior energy storage of the absorption system enabled it to satisfy the cooling demand during the night while solar energy was not available.


Sign in / Sign up

Export Citation Format

Share Document