scholarly journals Parametric Theoretical Study of Solar Assisted Cooling System Using Lithium Bromide-Water Pair

2021 ◽  
Vol 877 (1) ◽  
pp. 012020
Author(s):  
Ahmed A Shahhath ◽  
Haroun A K Shahad ◽  
Alaa A Mahdi

Abstract In this paper, the effect of parameters of solar absorption system such as evaporator, absorber, condenser, generator temperatures and the mass of the solution on the evaporator cooling load and the coefficient of performance has been explained theoretically. The results show that, increasing of evaporator and condenser temperatures increase the evaporator cooling load, performance coefficient and the Ratio of Circulation while increasing the temperature of condenser and absorber decreases the evaporator cooling load, performance coefficient and the Circulation Ratio. In addition, increasing the solution mass increases the refrigeration power while the performance coefficient and the Circulation Ratio was constant at increasing the solution mass. The reached maximum cooling load was (1.932 kW) at 15 kg solution mass and 100 °C generator temperature, the maximum COP was 0.774 at (10 °C) temperature of evaporator and the peak Circulation Ratio was 0.3066 at (30 °C) temperature of absorber and (100 °C) temperature of generator.

2014 ◽  
Vol 695 ◽  
pp. 797-800 ◽  
Author(s):  
Osamah Zaid Ahmed ◽  
Farid Nasir Ani

During the last few years, the awareness of the pollution and the global warming has dramatically increased which encourage the researchers around the world to find an alternative source of energy. One of the most efficient sources of energy is the solar energy especially for cooling and heating applications. This paper, described the simulation of a double-effect solar absorption system in Yemen using water lithium bromide solution as a working fluid. The system will be applied to a typical traditional house in Yemen. The performance of the system will be analyzed based on different high pressure generator temperature for the yearly solar radiation data. At higher pressure generator temperature, the results show a higher coefficient of performance of the system. This simulation also estimate high pressure generator heat transfer required to operate the system. As a result, the size of solar collector area and the cost of such system will be calculated.


2020 ◽  
pp. 9-21
Author(s):  
Abhishek Ajay ◽  
R. S. Gill ◽  
Rupinder Pal Singh

The aim of this paper is to assess the energy performance by simulation of a single effect LiBr-H2O vapour absorption system for office room cooling under Ludhiana (31°N) climate conditions. In an absorption cooling system, compressor which is using high grade energy, replaced by a combination of generator and absorber. The low grade heat is supplied to the generator which produces the cooling effect in the evaporator section. In the present work, lithium bromide is used as absorbent and water as refrigerant. A thermodynamic simulation of the cycle is carried out to investigate the effects of office room temperature and condenser temperature on the performance of the LiBr-H2O vapour absorption system. It was concluded that coefficient of performance (COP) increases from 0.55 to 0.75 as office room temperature increases from 22 to 30°C for fixed value of condenser temperature of 46°C. The maximum COP was observed when system runs on least value of condenser temperature.


2020 ◽  
Vol 10 (8) ◽  
pp. 2761
Author(s):  
María Venegas ◽  
Néstor García-Hernando ◽  
Alejandro Zacarías ◽  
Mercedes de Vega

In this work, the performance of a single effect absorption cooling system fed by solar thermal energy is evaluated. The absorption chiller includes a membrane-based microchannel desorber using three types of nanoparticles: Al2O3, CuO, or carbon nanotubes (CNT). Correlations available in the open literature to calculate the thermal conductivity of nanofluids are reviewed. Using experimental data for the water-lithium bromide solution (H2O-LiBr) with Al2O3 and CNT nanoparticles, the most appropriate correlation for thermal conductivity is selected. Nanofluid properties are evaluated using a concentration of nanoparticles of up to 5% in volume. The largest increase in the desorption rate (7.9%), with respect to using pure H2O-LiBr solution, is obtained using CNT nanoparticles and the maximum concentration of nanoparticles simulated. The performance of the chiller is evaluated and the daily solar coefficient of performance (SCOP) for the solar cooling facility is obtained. The best improvement with respect to the conventional system (without nanoparticles) represents an increase in the cooling effect of up to 6%. The maximum number of desorber modules recommended, always lower than 50, has been identified.


2020 ◽  
Vol 10 (10) ◽  
pp. 3622 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

The electrical power consumption of refrigeration equipment leads to a significant influence on the supply network, especially on the hottest days during the cooling season (and this is besides the conventional electricity problem in Iraq). The aim of this work is to investigate the energy performance of a solar-driven air-conditioning system utilizing absorption technology under climate in Baghdad, Iraq. The solar fraction and the thermal performance of the solar air-conditioning system were analyzed for various months in the cooling season. It was found that the system operating in August shows the best monthly average solar fraction (of 59.4%) and coefficient of performance (COP) (of 0.52) due to the high solar potential in this month. Moreover, the seasonal integrated collector efficiency was 54%, providing a seasonal solar fraction of 58%, and the COP of the absorption chiller was 0.44, which was in limit, as reported in the literature for similar systems. A detailed parametric analysis was carried out to evaluate the thermal performance of the system and analyses, and the effect of design variables on the solar fraction of the system during the cooling season.


2006 ◽  
Vol 17 (3) ◽  
pp. 65-70 ◽  
Author(s):  
V Mittal ◽  
K S Kasana ◽  
N S Thakur

This paper presents modelling and simulation of a solar absorption cooling system. In this paper, the modelling of a solar-powered, single stage, absorption cooling system, using a flat plate collector and water–lithium bromide solution, is done. A computer program has been developed for the absorption system to simulate various cycle configurations with the help of various weather data for the village Bahal, District Bhiwani, Haryana, India. The effects of hot water inlet temperatures on the coefficient of performance (COP) and the surface area of the absorption cooling component are studied. The hot water inlet temperature is found to affect the surface area of some of the system components. Moreover the effect of the reference temperature which is the minimum allowable hot water inlet temperature on the fraction of total load met by non-purchased energy (FNP) and coefficient of performance (COP) is studied and it is found that high reference temperature increases the system COP and decreases the surface area of system components but lower reference temperature gives better results for FNP than high reference temperatures.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3198 ◽  
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

Solar absorption cycles for air conditioning systems have recently attracted much attention. They have some important advantages that aid in reducing greenhouse gas emissions. In this work, design and thermo-economic analyses are presented in order to compare between two different collector types (parabolic trough and evacuated tube) by water–lithium bromide absorption systems, and to select the best operating conditions. Generally, the system consists of three major parts. The first part is the solar field for thermal power conversion. The second part is the intermediate cycle, which contains a flashing tank and pumping system. The third part is the water lithium bromide absorption chiller. A case study for a sports arena with 700–800 kW total cooling load is also presented. Results reveal that a parabolic trough collector combined with H2O–LiBr (PTC/H2O–LiBr) gives lower design aspects and minimum rates of hourly costs (USD 5.2/h), while ETC/H2O–LiBr configuration give USD 5.6/h. The H2O–LiBr thermo-economic product cost is USD 0.14/GJ. The cycle coefficient of performance COP was in the range of 0.5 to 0.9.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 22
Author(s):  
Andang Widiharto ◽  
Didit Setyo Pamuji ◽  
Atik Nurul Laila ◽  
Fiki Rahmatika Salis ◽  
Luthfi Zharif ◽  
...  

<p>Air conditioning (AC) is one of the most building’s energy consumer, included in building of Engineering Physisc’s Departement, Universitas Gadjah Mada (UGM). The declining of fossil fuel reserves and the increasing effects of global warming, forcing the world to switch to renewable energy sources. This paper discusses the design of solar absorption cooling system to replace conventional AC in seven lecture halls of Engineering Physic’s Departement, UGM. There are some steps that have been done to design the solar absorption cooling, i.e. do a study of the potential availability of solar energy, calculate the cooling loads, analyze the thermodynamic process of the system, determine the type of collector to be used and calculate area of solar collector needed. The thermal coefficient of performance (COP) of the system designed was about 0.84 which could use some types of flat plate solar collector with each area corresponding to each efficiency values. </p><p><strong>Keyword</strong> : Air conditioning; global warming; solar absorption cooling; solar collector</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093499
Author(s):  
Shafqat Hussain ◽  
Abdulrahim Kalendar ◽  
Muhammad Zeeshan Rafique ◽  
Patrick Oosthuizen

This article presents numerical investigations of the solar-assisted hybrid desiccant evaporative cooling system integrated with standard air collectors for applications under the hot and humid climatic conditions of Kuwait city. The objective is to introduce the energy-efficient and carbon-free solar-assisted hybrid desiccant evaporative cooling system to alleviate the principal problems of electricity consumption and carbon emissions resulting from the use of the conventional vapor-compression cooling systems. In the normal building, during cooling load operation, the solar-assisted hybrid desiccant evaporative cooling system can cope with the cooling load particularly sensible by evaporative cooling and latent through desiccant dehumidification. The outcomes of this work indicate that solar-assisted hybrid desiccant evaporative cooling device integrated with air collectors is capable of providing average coefficient of performance of 0.85 and has the potential to provide cooling with energy saving when compared with conventional vapor-compression refrigeration systems. It was concluded that under the intense outdoor environmental conditions (ambient air at greater than 45°C and 60% relative humidity), the delivered supply air from the evaporative cooling was nearly at 27°C and 65% relative humidity. To solve this problem, the system was assisted with conventional cooling coil (evaporator of heat pump) to supply air at comfortable conditions in the conditioned space.


2021 ◽  
Vol 11 (5) ◽  
pp. 2442
Author(s):  
Adil Al-Falahi ◽  
Falah Alobaid ◽  
Bernd Epple

Absorption refrigeration cycle is considered a vital option for thermal cooling processes. Designing new systems is needed to meet the increasing communities’ demands of space cooling. This should be given more attention especially with the increasing conventional fossil fuel energy costs and CO2 emission. This work presents the thermo-economic analysis to compare between different solar absorption cooling system configurations. The proposed system combines a solar field, flashing tank and absorption chiller: two types of absorption cycle H2O-LiBr and NH3-H2O have been compared to each other by parabolic trough collectors and evacuated tube collectors under the same operating conditions. A case study of 200 TR total cooling load is also presented. Results reveal that parabolic trough collector combined with H2O-LiBr (PTC/H2O-LiBr) gives lower design aspects and minimum rates of hourly costs (5.2 $/h) followed by ETC/H2O-LiBr configuration (5.6 $/h). H2O-LiBr gives lower thermo-economic product cost (0.14 $/GJ) compared to the NH3-H2O (0.16 $/GJ). The absorption refrigeration cycle coefficient of performance ranged between 0.5 and 0.9.


Sign in / Sign up

Export Citation Format

Share Document