Thermal-hydraulic design and analysis of a small modular molten salt reactor (MSR) with solid fuel

2017 ◽  
Vol 42 (3) ◽  
pp. 1098-1114 ◽  
Author(s):  
Chenglong Wang ◽  
Kaichao Sun ◽  
Dalin Zhang ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
...  
2020 ◽  
Vol 135 ◽  
pp. 106973
Author(s):  
Robert Mardus-Hall ◽  
Mark Ho ◽  
Andrew Pastrello ◽  
Guan Yeoh

Author(s):  
Julien de Troullioud de Lanversin ◽  
Alexander Glaser ◽  
Malte Göttsche

In circulating fuel reactors, such as the Molten Salt Reactor, the fuel circulates throughout the reactor instead of being immobile as in solid fuel reactors. The vast majority of nuclear simulation codes are primarily designed to simulate solid fuel reactors. Hence, many features unique to circulating fuel reactors, such as fuel injection and removal, cannot be properly modeled with these codes. The work presented here focuses on developing a numerical simulation package that can effectively and accurately model these reactors. This package consists of the coupling of the Monte Carlo particle transport code OpenMC with a modified version of ORIGEN-S, and uses a novel algorithm that calculates the optimal fuel injection and removal schemes for such reactors to achieve certain conditions such as a stable reactivity. We demonstrate our code’s accuracy by benchmarking the coupling module with the MCODE coupling code, and by simulating the operation of the ORNL Denatured Molten Salt Reactor using the coupling and fuel injection modules. The resulting fuel injection scheme is in agreement with the original study of that reactor while offering a much finer resolution for the injection scheme over time. This work is part of a broader project to develop an open-source neutronics code for circulating fuel reactors that will couple OpenMC with an in-house open-source depletion module.


2019 ◽  
Vol 110 ◽  
pp. 325-332 ◽  
Author(s):  
Zhifeng Li ◽  
Jiejin Cai ◽  
Qin Zeng ◽  
Xuezhong Li ◽  
Ye Wang

2018 ◽  
Vol 335 ◽  
pp. 391-399 ◽  
Author(s):  
Chenglong Wang ◽  
Hao Qin ◽  
Dalin Zhang ◽  
Wenxi Tian ◽  
Suizheng Qiu ◽  
...  

Author(s):  
Takahisa Yamamoto ◽  
Koshi Mitachi ◽  
Masatoshi Nishio

The Molten Salt Reactor (MSR) systems are liquid-fueled reactors that can be used for actinide burning, production of electricity, production of hydrogen, and production of ssile fuels (breeding). Thorium (Th) and uranium-233 (233U) are fertile and ssile of the MSR systems, and dissolved in a high-temperature molten fluoride salt (fuel salt) with a very high boiling temperature (up to 1650K), that is both the reactor nuclear fuel and the coolant. The MSR system is one of the six advanced reactor concepts identified by the Generation IV International Forum (GIF) as a candidate for cooperative development [1]. In the MSR system, fuel salt flows through a fuel duct constructed around a reactor core and fuel channel of a graphite moderator accompanied by fission reaction and heat generation, and flows out to an external-loop system consisted of a heat exchanger and a circulation pump. Due to the motion of fuel salt, delayed neutron precursors that are one of the source of neutron production make to change their position between the ssion reaction and neutron emission events and decay even occur in the external loop system. Hence the reactivity and effective delayed neutron precursor fraction of the MSR system are lower than those of solid fuel reactor systems such as Boiling Water Reactors (BWRs) and Pressurised Water Reactor (PWRs). Since all of the presently operating nuclear power reactors utilize solid fuel, little attention had been paid to the MSR analysis of the reactivity loss and reactor characteristics change caused by the fuel salt circulation. Sides et al. [2] and Shimazu et al. [3] developed MSR analytical models based on the point reactor kinetics model to consider the effect of fuel salt flow. Their models represented a reactor as having six zones for fuel salt and three zones for the graphite moderator. Since their models employed the point reactor kinetics model and the rough temperature approximation, their results were not sufficiently accurate to consider the effect of fuel salt flow.


Author(s):  
S. Jiang ◽  
M. Perez-Ferragut ◽  
Z. Fu ◽  
J. K. Hohorst

In recent years, organizations both at home and abroad are actively carrying out a research on the Molten Salt Reactor systems (MSRs). For example, the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Science (CAS), is currently involved in the design and development of a 10MWth Solid Fuel Thorium Molten Salt Reactor (TMSR-SF1). SINAP started their analysis of TMSR using an earlier version of RELAP/SCDAPSIM, MOD4.0. MOD4.0 included models and correlations for molten salts but was unable to treat molten salts in the presence of non-condensable gases. Since that time SINAP and ISS have worked in parallel to extend the models and correlations for such systems. The SINAP modified code, using SINAP proprietary models and correlations, is described in the “open literature” under the name RELAP5-MSR. More general, but comparable, models developed by ISS for liquid metals/salts in the presence of non-condensable have been incorporated into RELAP/SCDAPSIM/MOD4.1. This extended option is currently being implemented for Li-Pb, Pb-Bi, molten salts, and Na.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Terry J. Price ◽  
Ondrej Chvala

Abstract Due to the circulating nature of the fuel, there is a qualitative difference between xenon behavior in a molten salt reactor (MSR) compared to a solid fuel reactor. Therefore, the equations that describe 135Xe behavior in a molten salt reactor must be formulated differently. Prior molten salt reactor xenon models have focused on behavior below a solubility limit in which the 135Xe is partially dissolved in the fuel salt. It is foreseeable that a molten salt reactor may operate with a concentration of gas dissolved in the salt sufficiently high such that no further gas may dissolve in the fuel salt. This paper introduces a theory of molten salt reactor xenon behavior for a reactor operating above the solubility limit. A model was developed based on this theory and analyses performed are discussed. Results indicate: (1) steady-state xenon poisoning is not monotonic with respect to gas egress rate, (2) a increase in gas ingress rate leads to a characteristic increase which is followed by a new steady-state in xenon poisoning, and (3) given a sufficient rate of gas egress, it is possible to remove the iodine pit behavior.


Sign in / Sign up

Export Citation Format

Share Document