fuel reactor
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Lianjie ◽  
Wei Yanqin ◽  
Lou Lei ◽  
Huang Shien

Based on the requirement of Hexagonal Casing Type Fuel Reactor (HCTFR) nuclear design and the critical physical experiment design method introduced by a single factor, 11 core critical physical experiments are proposed to validate the calculation accuracy and reliability of the nuclear design code CPLEV2. The experiment loading scheme fully takes into account the various components and more than one irradiate hole in the HCTFR core, which is used as critical physical experiment schemes successfully. According to the critical physical experiment data, the reactivity calculation deviations of all critical physical experiments are within ±1.0%. The validation results show that the nuclear design code CPLEV2 has high calculation accuracy and reliability for the core of hexagonal casing type fuel, and it can be used for HCTFR nuclear design.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yan Feng ◽  
Qianhui Yang ◽  
Zongliang Zuo ◽  
Siyi Luo ◽  
Dongdong Ren ◽  
...  

Copper slag, an important by-product of the copper smelting process, is mainly composed of 2FeO SiO2, Fe3O4, and SiO2. Due to the sufficient metal oxides, copper slag is regard as a potential oxygen carrier (OC), which can be applied in chemical looping technology. This research proposed to use the granulated copper slag particles as precursor to produce oxygen carrier. Through this method, waste heat of the high-temperature slag can be fully recovered, eliminating the complicated copper slag pretreatment process. In this paper, the reactivity of granulated copper slag after redox calcination was studied by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM), the highest reactivity occurred at 1,000°C. In addition, the oxygen release and absorption performance of OC were tested in thermal-gravimetric (TG). According to theoretical calculations, the mass loss caused by oxygen release accounts for 70.57% of the total loss and the mass reached by 4.2% at 1,000°C in oxygen absorption experiment. The copper slag modified through calcining in redox condition was proved to be a promising oxygen carrier in chemical looping process. Furthermore, the performance research on OC also provided theoretical references for the operating paraments of OC circulating between air reactor and fuel reactor in practical chemical looping processes.


2021 ◽  
pp. 1-24
Author(s):  
Imtenan Sayeed ◽  
Mahmud Arman Kibria ◽  
Sankar Bhattacharya

Abstract In a chemical looping combustion (CLC) system, gasification kinetics of char holds immense importance being the rate-limiting reaction in the fuel reactor. This paper studied the gasification kinetics of char derived from Victorian Brown Coal (VBC) in a fluidised bed reactor which mimics the fuel reactor conditions of a CLC process. Mass of char, char particle size and gas flow conditions were optimised to ensure the gasification reaction free from mass transfer limitations. Effect of oxygen carrier, hematite, being the bed material was also studied. The experiments were conducted in the temperature range of 800C-950C, which is a typical range for fuel reactor. The experimental results were modelled with the help of grain model (GM) and random pore model (RPM) to analyse the kinetic parameters. Activation energy was found to be around 177 kJ/mol in sand bed and 175.5 kJ/mol in the hematite bed. Reaction in hematite bed was found to be 42% faster on average compared to the reaction in a sand bed. Fastest total conversion of char took as low as 4.1 minutes in hematite bed at 950C. While catalytic effect of hematite was ruled out due to insignificant change in activation energy, it was concluded that increase in CO2 partial pressure at the vicinity of char particle enhanced the reaction rate in the case of hematite bed. This study has generated relevant information for the CLC of Victorian Brown Coal with hematite as the oxygen carrier.


2021 ◽  
Vol 4 (1) ◽  
pp. 36-41
Author(s):  
Maksim Tsukanov ◽  

The article discusses the possibilities of solving the problem of using connected petroleum gas using GTL technologies. The most important difference between hydrocarbon products of Fisher-Tropsh synthesis and petroleum products is that they do not contain sulfur, nitrogen, and in some cases aromatic compounds, which determines their environmental importance. Synthetic oil is a mixture of normal and isostrotic hydrocarbons C5-C19used for processing in paraffin and motor fuels, as a rawmaterial for the chemical and petrochemical industries, or as a commercial product.Key words:synthesis gas, utilization, GTL technologies, Euro-5, synthetic fuel, reactor, torch, catalyst


2021 ◽  
Vol 323 ◽  
pp. 00019
Author(s):  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Anna Zylka ◽  
Kamil Idziak ◽  
Karol Sztekler ◽  
...  

The paper describes experiences in the modeling of complex geometry CLC equipment. The facility consists of two reactors: the air reactor and the fuel reactor. The fuzzy logic (FL) methods are used in the study for the prediction of NOx and SO2 from the solid fuels combustion in CLC equipment. Maximum errors between measured and predicted results are lower than 10 %.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract Chemical looping combustion (CLC) is an attractive technology to achieve inherent CO2 separation with low energy penalty. In CLC, the conventional one-step combustion process is replaced by two successive reactions in two reactors, a fuel reactor (FR) and an air reactor (AR). In addition to experimental techniques, computational fluid dynamics (CFD) is a powerful tool to simulate the flow and reaction characteristics in a CLC system. This review attempts to analyze and summarize the CFD simulations of CLC process. Various numerical approaches for prediction of CLC flow process are first introduced and compared. The simulations of CLC are presented for different types of reactors and fuels, and some key characteristics including flow regimes, combustion process, and gas-solid distributions are described in detail. The full-loop CLC simulations are then presented to reveal the coupling mechanisms of reactors in the whole system such as the gas leakage, solid circulation, redox reactions of the oxygen carrier, fuel conversion, etc. Examples of partial-loop CLC simulation are finally introduced to give a summary of different ways to simplify a CLC system by using appropriate boundary conditions.


2020 ◽  
Vol 1689 ◽  
pp. 012048
Author(s):  
T S Dikova ◽  
Yu E Karazhelevskaya ◽  
A M Terekhova
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5394
Author(s):  
Anna Zylka ◽  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Kamil Idziak ◽  
Marcin Sosnowski ◽  
...  

This paper presents a 1.5D model of a fluidized bed chemical looping combustion (CLC) built with the use of a comprehensive simulator of fluidized and moving bed equipment (CeSFaMB) simulator. The model is capable of calculating the effect of gas velocity in the fuel reactor on the hydrodynamics of the fluidized bed and the kinetics of the CLC process. Mass of solids in re actors, solid circulating rates, particle residence time, and the number of particle cycles in the air and fuel reactor are considered within the study. Moreover, the presented model calculates essential emissions such as CO2, SOX, NOX, and O2. The model was successfully validated on experimental tests that were carried out on the Fluidized-Bed Chemical-Looping-Combustion of Solid-Fuels unit located at the Institute of Advanced Energy Technologies, Czestochowa University of Technology, Poland. The model’s validation showed that the maximum relative errors between simulations and experiment results do not exceed 10%. The CeSFaMB model is an optimum compromise among simulation accuracy, computational resources, and processing time.


Sign in / Sign up

Export Citation Format

Share Document