Water usage and energy penalty of different hybrid cooling system configurations for a natural gas combined cycle power plant—Effect of carbon capture unit integration

2019 ◽  
Vol 43 (11) ◽  
pp. 5879-5896 ◽  
Author(s):  
Saif W. Mohammed Ali ◽  
Nasser Vahedi ◽  
Carlos Romero ◽  
Arindam Banerjee
2022 ◽  
Vol 14 (1) ◽  
pp. 533
Author(s):  
Alberto Fichera ◽  
Samiran Samanta ◽  
Rosaria Volpe

This study aims to propose the repowering of an existing Italian natural-gas fired combined cycle power plant through the integration of Molten Carbonate Fuel Cells (MCFC) downstream of the gas turbine for CO2 capture and to pursuit an exergetic analysis of the two schemes. The flue gases of the turbine are used to feed the cathode of the MCFC, where CO2 is captured and transported to the anode while generating electric power. The retrofitted plant produces 787.454 MW, in particular, 435.29 MW from the gas turbine, 248.9 MW from the steam cycle, and 135.283 MW from the MCFC. Around 42.4% of the exergy destruction has been obtained, the majority belonging to the combustion chamber and, in minor percentages, to the gas turbine and the MCFC. The overall net plant efficiency and net exergy efficiency are estimated to be around 55.34 and 53.34%, respectively. Finally, the specific CO2 emission is around 66.67 kg/MWh, with around 2 million tons of carbon dioxide sequestrated.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Oghare Victor Ogidiama ◽  
Mohammad Abu Zahra ◽  
Tariq Shamim

High energy penalty and cost are major obstacles in the widespread use of CO2 capture techniques for reducing CO2 emissions. Chemical looping combustion (CLC) is an innovative means of achieving CO2 capture with less cost and low energy penalty. This paper conducts a detailed techno-economic analysis of a natural gas-fired CLC-based power plant. The power plant capacity is 1000 MWth gross power on a lower heating value basis. The analysis was done using Aspen Plus. The cost analysis was done by considering the plant location to be in the United Arab Emirates. The plant performance was analyzed by using the cost of equipment, cost of electricity, payback period, and the cost of capture. The performance of the CLC system was also compared with a conventional natural gas combined cycle plant of the same capacity integrated with post combustion CO2 capture technology. The analysis shows that the CLC system had a plant efficiency of 55.6%, electricity cost of 5.5 cents/kWh, payback time of 3.77 years, and the CO2 capture cost of $27.5/ton. In comparison, a similar natural gas combined cycle (NGCC) power plant with CO2 capture had an efficiency of 50.6%, cost of electricity of 6.1 cents/kWh, payback period of 4.57 years, and the capture cost of $42.9/ton. This analysis shows the economic advantage of the CLC integrated power plants.


Author(s):  
Robert Flores ◽  
Jack Brouwer

Abstract Traditional carbon capture technology has been shown to effectively capture emissions, but at a cost of reducing power plant output. Molten carbonate fuel cell technology (MCFC) has the potential to be able to concentrate plant carbon emissions into a gas stream that is suitable for storage while boosting total plant power output. When considering this type of technology, the original purpose and function of the power plant must be considered. In particular, gas turbines (GT) based natural gas combined cycle (NGCC), which are capable of dynamic load following operation, are likely to need to maintain operational flexibility. This work explores the retrofit of an existing GT with MCFC technology for carbon capture when the plant is operated at part load. Physical models for major plant components are built and used to select optimal operating set points such that operating cost is minimized. Special attention is given to ensuring feasible operation across all engine components. The results show MCFC operational parameters that minimize change in fuel cell operating conditions when the gas turbine is operated at part load.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3055 ◽  
Author(s):  
Yue Hu ◽  
Yachi Gao ◽  
Hui Lv ◽  
Gang Xu ◽  
Shijie Dong

Although carbon mitigation in power industry is attracting more and more attention around the world, the large scale application of carbon capture technology is obstructed because of the enormous energy consumption and huge capital investment required. In this study, an integrated system with power generation, CO2 capture and heat supply are proposed, which adopts three measures to reutilize the waste heat released from the CO2 capture process, including extracted steam recirculation, a CO2 Rankine cycle and a radiant floor heat subsystem. Amongst these measures, the radiant floor heat subsystem can efficiently reuse the relatively low temperature waste energy in the absorbent cooler. Through thermodynamic analysis, it is determined that the power output of the new integrated system is 19.48 MW higher compared with the decarbonization Natural Gas Combined Cycle (NGCC) power plant without system integration. On the other hand, 247.59 MW of heat can be recovered through the radiant floor heat subsystem, leading to an improved overall energy efficiency of 73.6%. In terms of the economic performance, the integration requires only 2.6% more capital investment than a decarbonization NGCC power plant without system integration and obtains extra revenue of 3.40 $/MWh from the simultaneous heat supply, which reduces the cost of CO2 avoided by 22.3%. The results prove the economic and efficiency potential of a NGCC power plant integrated with carbon capture, which may promote the industrial demonstration of carbon capture theology.


2014 ◽  
Vol 63 ◽  
pp. 2394-2401
Author(s):  
Satoshi Saito ◽  
Norihide Egami ◽  
Toshihisa Kiyokuni ◽  
Mitsuru Udatsu ◽  
Hideo Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document