Highly active and stable electrocatalytic transition metal phosphides ( Ni 2 P and FeP ) nanoparticles on porous carbon cloth for overall water splitting at high current density

2020 ◽  
Vol 44 (14) ◽  
pp. 11894-11907
Author(s):  
Hyun Jung Shin ◽  
Sung‐Woo Park ◽  
Dong‐Wan Kim
2016 ◽  
Vol 138 (44) ◽  
pp. 14686-14693 ◽  
Author(s):  
Gong Zhang ◽  
Guichang Wang ◽  
Yang Liu ◽  
Huijuan Liu ◽  
Jiuhui Qu ◽  
...  

2021 ◽  
pp. 2103533
Author(s):  
Rui Liu ◽  
Zhichao Gong ◽  
Jianbin Liu ◽  
Juncai Dong ◽  
Jiangwen Liao ◽  
...  

Author(s):  
Wen-Wei Song ◽  
Bing Wang ◽  
Xiao-Man Cao ◽  
Qiang Chen ◽  
Zhengbo Han

Metal-organic frameworks (MOFs)-derived transition-metal oxides and transition-metal phosphides have great application potential as electrode materials for supercapacitors, owing to the excellent redox activity and high conductivity. However, their electrochemical performances...


2020 ◽  
Vol 7 (19) ◽  
pp. 3627-3635 ◽  
Author(s):  
Rui Guo ◽  
Yan He ◽  
Renchao Wang ◽  
Junhua You ◽  
Hongji Lin ◽  
...  

It is increasingly important to develop an efficient OER catalyst that can provide high current density at low overpotentials to improve water splitting efficiency.


2013 ◽  
Vol 774-776 ◽  
pp. 795-798
Author(s):  
Ting Jin Zhou ◽  
Min Lu ◽  
Ri Yao Chen

Carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) and chitosan (CS)-polyvinyl alcohol were cross-linked by Fe3+and glutaraldehyde respectively to prepare cation exchange layer and anion exchange layer, and polyvinyl alcohol-sodium alginate (SA)-metal octocarboxyphthalocyanine (MePc (COOH)8, a kind of water splitting catalyst, here, Me stands for Fe3+or Co2+) nanofibers were prepared by electrospinning technique and introduced into the interlayer to obtain the CMC-PVA/PVA-SA-MePc (COOH)8/CS-PVA bipolar membrane (BPM). The experimental results showed that compared with the BPM without the PVA-SA-MePc (COOH)8interlayer, the water splitting efficiency at the interlayer of the CMC-PVA/PVA-SA-MePc (COOH)8/ CS-PVA BPM was obviously increased, and its membrane impedance decreased. When the concentration of FePc (COOH)8in the PVA-SA-FePc (COOH)8nanofibers was 3.0%, the trans-membrane voltage drop (IRdrop) of the CMC-PVA/PVA-SA-FePc (COOH)8/CS-PVA BPM was as low as 0.6V at a high current density of 90 mA/cm2.


Nano Today ◽  
2017 ◽  
Vol 15 ◽  
pp. 26-55 ◽  
Author(s):  
Yang Wang ◽  
Biao Kong ◽  
Dongyuan Zhao ◽  
Huanting Wang ◽  
Cordelia Selomulya

2017 ◽  
Vol 62 (9) ◽  
pp. 633-644 ◽  
Author(s):  
Jinzhan Su ◽  
Jinglan Zhou ◽  
Lu Wang ◽  
Cong Liu ◽  
Yubin Chen

2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Ying ◽  
Huan Wang

Electrochemical water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a greatly promising technology to generate sustainable and renewable energy resources, which relies on the exploration regarding the design of electrocatalysts with high efficiency, high stability, and low cost. Transition metal phosphides (TMPs), as nonprecious metallic electrocatalysts, have been extensively investigated and proved to be high-efficient electrocatalysts in both HER and OER. In this minireview, a general overview of recent progress in developing high-performance TMP electrocatalysts for electrochemical water splitting has been presented. Design strategies including composition engineering by element doping, hybridization, and tuning the molar ratio, structure engineering by porous structures, nanoarray structures, and amorphous structures, and surface/interface engineering by tuning surface wetting states, facet control, and novel substrate are summarized. Key scientific problems and prospective research directions are also briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document