Dynamic optimization of solar‐wind hybrid system connected to electrical battery or hydrogen as an energy storage system

Author(s):  
Sina Akhavan Shams ◽  
Rouhollah Ahmadi
2019 ◽  
Vol 7 (5) ◽  
pp. 130 ◽  
Author(s):  
Kyunghwa Kim ◽  
Kido Park ◽  
Gilltae Roh ◽  
Kangwoo Chun

Liquefied natural gas (LNG) is recognized as a preferable alternative fuel for ship owners, since it can substantially reduce harmful emissions to comply with stricter environmental regulations. The increasing number of LNG-fueled vessels has driven up the number of LNG bunkering vessels (LNGBVs) as well. A key issue of LNGBVs is boil-off gas (BOG) generation, especially the huge amount of BOG that is generated during loading and unloading (bunkering) processes. This study proposes a hybrid system that combines conventional onboard LNG-fueled generators with an energy storage system (ESS) to solve the BOG issue of LNGBVs. This hybrid system is targeted at an LNGBV with the cargo capacity of 5000 m3. The amount of BOG generation is calculated based on assumed operation modes, and the economic study and the environmental analysis are performed based on the results. By comparing the conventional system to the proposed ones, some benefits can be verified: about 46.2% BOG reduction, 66.0% fuel saving, a 7.6-year payback period, and 4.8 tons of greenhouse gas (GHG) reduction for one voyage in the best case, with some assumptions. This proposed hybrid system using the ESS could be an attractive green solution to LNGBV owners.


2013 ◽  
Vol 860-863 ◽  
pp. 287-292 ◽  
Author(s):  
Peng Yu ◽  
Guang Lei Li ◽  
Yong Zhang ◽  
Yan Cheng ◽  
Shu Min Sun ◽  
...  

The energy storage technique is one of the most effective means for the real-time wind power regulation. Firstly, this paper discussed the operation mode of energy storage system for real-time wind power regulation. At the same time, we proposed that the energy storage system applied into the real-time wind power regulation should be of the properties of high power density, high energy density and long cycle life. By analyzing the properties of battery and supercapacitor, we arrive at the conclusion that the battery-supercapacitor hybrid system obtains the enhanced characteristics to meet the performance requirement for energy storage system. In order to achieve the real-time wind power suppression, we carried out a comparative research on the topology of battery-supercapacitor hybrid system. The operation mode of each topology was discussed. From the standpoint of practical engineering, the merits and deficiencies of each topology were explored.


Sign in / Sign up

Export Citation Format

Share Document