scholarly journals High-performance Energy Storage System Using Low-cost Sensors for a Photovoltaic and Battery Hybrid System

2019 ◽  
Vol 31 (11) ◽  
pp. 3691
Author(s):  
Pi-Yun Chen ◽  
Kuei-Hsiang Chao ◽  
Yu-Sheng Tsai
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuechao Pu ◽  
Baozheng Jiang ◽  
Xianli Wang ◽  
Wenbao Liu ◽  
Liubing Dong ◽  
...  

AbstractRechargeable aqueous zinc-ion batteries (ZIBs) have been gaining increasing interest for large-scale energy storage applications due to their high safety, good rate capability, and low cost. However, the further development of ZIBs is impeded by two main challenges: Currently reported cathode materials usually suffer from rapid capacity fading or high toxicity, and meanwhile, unstable zinc stripping/plating on Zn anode seriously shortens the cycling life of ZIBs. In this paper, metal–organic framework (MOF) materials are proposed to simultaneously address these issues and realize high-performance ZIBs with Mn(BTC) MOF cathodes and ZIF-8-coated Zn (ZIF-8@Zn) anodes. Various MOF materials were synthesized, and Mn(BTC) MOF was found to exhibit the best Zn2+-storage ability with a capacity of 112 mAh g−1. Zn2+ storage mechanism of the Mn(BTC) was carefully studied. Besides, ZIF-8@Zn anodes were prepared by coating ZIF-8 MOF material on Zn foils. Unique porous structure of the ZIF-8 coating guided uniform Zn stripping/plating on the surface of Zn anodes. As a result, the ZIF-8@Zn anodes exhibited stable Zn stripping/plating behaviors, with 8 times longer cycle life than bare Zn foils. Based on the above, high-performance aqueous ZIBs were constructed using the Mn(BTC) cathodes and the ZIF-8@Zn anodes, which displayed an excellent long-cycling stability without obvious capacity fading after 900 charge/discharge cycles. This work provides a new opportunity for high-performance energy storage system.


Author(s):  
Xiaogang Niu ◽  
Jiale Qu ◽  
Youran Hong ◽  
Leqing Deng ◽  
Ruiting Wang ◽  
...  

Potassium ion batteries (KIBs) are attracting an increasing research interest as a potential low-cost energy storage system. Currently, the development of KIBs is mainly hindered by the poor cycle life...


2019 ◽  
Vol 14 (2) ◽  
pp. 233-252
Author(s):  
R. Senthilkumar ◽  
G.M. TamilSelvan ◽  
S. Kanithan ◽  
N. Arun Vignesh

Implementing a low cost, power efficient and high performance routing protocol in wireless sensor networks (WSNs) is an important requirement for transmitting a packet through network. In this paper we propose, a new cost and energy aware routing protocol (CEAR) that works based on the two metrics such as cost welfare metric and route score metric.A hybrid electrical energy storage (HEES) framework which holds numerous banks of heterogeneous electrical energy storage (EES) components to be specific battery and a ultra-capacitor is used for providing energy to the network exhibit in the WSN for routing. The simulation results shows that our proposed routing protocol routes the packet efficiently by choosing the best path that also reduces the cost and routes the packet with reduced power consumption. The quantitative metrics in terms of packet delivery ratio of 0.93, average end to end delay of 110 secs, packet loss ratio of 0.75, average throughput attained of 250 bits/sec and efficiency of 98-99.9% overpowers the performance of our proposed work.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Author(s):  
Xiang Long Huang ◽  
Yunxiao Wang ◽  
Shulei Chou ◽  
Shi Xue Dou ◽  
Zhiming M. Wang

Room-temperature sodium-sulfur (RT Na-S) batteries constitute an extremely competitive electrochemical energy storage system, owing to their abundant natural resources, low cost, and outstanding energy density, which could potentially overcome the...


2019 ◽  
Vol 7 (5) ◽  
pp. 130 ◽  
Author(s):  
Kyunghwa Kim ◽  
Kido Park ◽  
Gilltae Roh ◽  
Kangwoo Chun

Liquefied natural gas (LNG) is recognized as a preferable alternative fuel for ship owners, since it can substantially reduce harmful emissions to comply with stricter environmental regulations. The increasing number of LNG-fueled vessels has driven up the number of LNG bunkering vessels (LNGBVs) as well. A key issue of LNGBVs is boil-off gas (BOG) generation, especially the huge amount of BOG that is generated during loading and unloading (bunkering) processes. This study proposes a hybrid system that combines conventional onboard LNG-fueled generators with an energy storage system (ESS) to solve the BOG issue of LNGBVs. This hybrid system is targeted at an LNGBV with the cargo capacity of 5000 m3. The amount of BOG generation is calculated based on assumed operation modes, and the economic study and the environmental analysis are performed based on the results. By comparing the conventional system to the proposed ones, some benefits can be verified: about 46.2% BOG reduction, 66.0% fuel saving, a 7.6-year payback period, and 4.8 tons of greenhouse gas (GHG) reduction for one voyage in the best case, with some assumptions. This proposed hybrid system using the ESS could be an attractive green solution to LNGBV owners.


2018 ◽  
Author(s):  
Sender Rocha dos Santos ◽  
Juliana C. M. S. Aranha ◽  
Fernando Augusto Cerri ◽  
Thiago Chiachio do Nascimento ◽  
Maria de Fátima Negreli Campos Rosolem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document