scholarly journals Investigation on pressure pulsation and modal behavior of the impeller in a nuclear reactor coolant pump

Author(s):  
Qiang Zhou ◽  
Xinwei Zhao ◽  
Lin Pei ◽  
Hongkun Li
Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1592
Author(s):  
Xin Chen ◽  
Shiyang Li ◽  
Dazhuan Wu ◽  
Shuai Yang ◽  
Peng Wu

In order to study the effects of the suction and discharge conditions on the hydraulic performance and unsteady flow phenomena of an axial-flow reactor coolant pump (RCP), three RCP models with different suction and discharge configurations are analyzed by computational fluid dynamics (CFD) method. The CFD results are validated by experimental data. The hydraulic performance of the three RCP models shows little difference. However, the unsteady flow phenomena of RCP are significantly affected by the variation of suction and discharge conditions. Compared with that of Model E-S (baseline, elbow-single nozzle), the pressure pulsation in rotating frame of Model S-S (straight pipe-single nozzle) and Model E-D (elbow-double nozzles) is weakened in different degrees and forms, due to the more uniform flow fields upstream and downstream of the impeller, respectively. It indicates that the generalized rotor-stator interaction (RSI) actually exists between the rotating impeller and all stationary components causing the circumferentially non-uniform flow. Furthermore, improving the circumferential uniformity of the flow upstream and downstream of impeller (suction and discharge flow) also contributes to reducing the radial dynamic fluid force acting on the impeller. Compared with those of Model E-S, the dynamic FX and FY of Model S-S are severely weakened, and those of Model E-D also gain a minor amplitude decrease at fBPF. In contrast, the general pressure pulsation in fixed frame is mainly related to the rotating impeller and barely affected by the suction and discharge conditions.


2019 ◽  
Vol 25 (18) ◽  
pp. 2509-2522 ◽  
Author(s):  
Xiuli Wang ◽  
Yonggang Lu ◽  
Rongsheng Zhu ◽  
Yuanyuan Zhao ◽  
Qiang Fu

The idling characteristic of the reactor coolant pump is one of the important indicators for the safe operation of the nuclear power system. The idling transition process of the reactor coolant pump under the power failure accident condition belongs to the transient flow process. During most of the time of the idling transition process, the parameters of flow, rotating speed, and head are all nonlinear changes, and the study of the idling change law is extremely difficult. This paper introduces the nonlinear inertia transient phase of the reactor coolant pump and the principle of wavelet analysis. Based on the experimental results of the idling transition process, the polynomial fitting of the flow curve and the rotating speed curve is fitted, and the idling transient equation is established which is a boundary condition for computational fluid dynamics simulation of the nonlinear idling transient stage of the reactor coolant pump with different types of guide vanes. The signal fluctuation of pressure pulsation time-domain change at the volute outlet in different sub-bands is analyzed by means of a fast, discrete wavelet transform, and the effects of different vane optimizations in different idling stages are analyzed. It was found that the pressure fluctuation amplitude of each sub-frequency range of pump outlet in the model of the shunt guide vane is significantly smaller than that of the normal guide vane.


2016 ◽  
Vol 62 (4) ◽  
pp. 231-242 ◽  
Author(s):  
Dan Ni ◽  
Minguan Yang ◽  
Bo Gao ◽  
Ning Zhang ◽  
Zhong Li

2014 ◽  
Vol 721 ◽  
pp. 73-77 ◽  
Author(s):  
Wei Nan Jin ◽  
Rong Xie ◽  
Mu Ting Hao ◽  
Xiao Fang Wang

To study the effects of guide vane with different vane wrap angles and relative positions of outlet edge on hydraulic performance of nuclear reactor coolant pump, three-dimensional steady numerical simulations were performed by using CFD commercial software Numeca. The results show that the vane wrap angle changes the head and power characteristics by changing the relative velocity angle in vane outlet. The inner flow field changes while the wrap angle changes. With the wrap angle increases, the shock loss in volute is reducing, but the friction loss in vane passages is getting large. So there exists an optimum wrap angle and relative positions of outlet edge that corresponds to the highest efficiency of a pump. Numerical simulation is performed with the two key design parameters optimized through surrogate model, the internal flow field is improved and then the hydraulic efficiency is improved.


Sign in / Sign up

Export Citation Format

Share Document