scholarly journals Correlating earthquake static stress drop values with fault complexity in the 2016 Amatrice-Norcia earthquake sequence, Central Italy

2019 ◽  
Author(s):  
Kilian Kemna ◽  
Alessandro Verdecchia ◽  
Rebecca Harrington
1984 ◽  
Vol 74 (1) ◽  
pp. 27-40
Author(s):  
M. E. O'Neill

Abstract Source dimensions and stress drops of 30 small Parkfield, California, earthquakes with coda duration magnitudes between 1.2 and 3.9 have been estimated from measurements on short-period velocity-transducer seismograms. Times from the initial onset to the first zero crossing, corrected for attenuation and instrument response, have been interpreted in terms of a circular source model in which rupture expands radially outward from a point until it stops abruptly at radius a. For each earthquake, duration magnitude MD gave an estimate of seismic moment MO and MO and a together gave an estimate of static stress drop. All 30 earthquakes are located on a 6-km-long segment of the San Andreas fault at a depth range of about 8 to 13 km. Source radius systemically increases with magnitude from about 70 m for events near MD 1.4 to about 600 m for an event of MD 3.9. Static stress drop ranges from about 2 to 30 bars and is not strongly correlated with magnitude. Static stress drop does appear to be spatially dependent; the earthquakes with stress drops greater than 20 bars are concentrated in a small region close to the hypocenter of the magnitude 512 1966 Parkfield earthquake.


Author(s):  
Alessandro Caporali ◽  
Salvatore Barba ◽  
Michele M. C. Carafa ◽  
Roberto Devoti ◽  
Grazia Pietrantonio ◽  
...  

2021 ◽  
Author(s):  
Chen Ji ◽  
Ralph Archuleta

<p>Source spectral models developed for strong ground motion simulations are phenomenological models that represent the average effect that the source processes have on near fault ground motion. Their parameters are directly regressed from the observations and often do not have clear meaning for the physics of the source process. We investigate the relation between the kinematic double-corner frequency (DCF) source spectral model JA19_2S (Ji and Archuleta, BSSA, 2020) and static fault geometry scaling relations proposed by Leonard (2010). We derive scaling relations for the low and high corner frequency in terms of static stress drop, dynamic stress drop, fault rupture velocity, fault aspect ratio, and relative hypocenter location. We find that the non-self-similar low corner frequency  scaling relation of JA19_2S model for 5.3<<strong>M</strong><6.9 earthquakes is well explained using the fault length scaling relation of Leonard’s model combined with a constant rupture velocity. Earthquakes following both models have constant average static stress drop and constant average dynamic stress drop. The high frequency source radiation is controlled by seismic moment, static stress drop and dynamic stress drop but strongly modulated by the fault aspect ratio and the hypocenter’s relative location. The mean, scaled energy  (or apparent stress) decreases with magnitude due to the magnitude dependence of the fault aspect ratio. Based on these two models, the commonly quoted average rupture velocity of 70-80% of shear wave speed implies predominantly unilateral rupture.</p>


1984 ◽  
Vol 74 (2) ◽  
pp. 395-415
Author(s):  
D. J. Doornbos

Abstract The determination of radiated seismic energy on the one hand, and of source size and static stress drop on the other, depends in principle on a representation of different parts of the source spectrum. In practice with band-limited data from a sparse network, the required source parameterization is often the same. Spectral models parameterized by the source's central moments of degree zero and two are introduced as an approximation to the general representation of the amplitude spectrum in terms of the central moments of even degree. Phase spectra are not used, apart from polarity. These models are shown to simulate well the principal features of common circular and Haskell type of models, including the corner frequency shift of P waves with respect to S waves, and the relation between rupture velocity and maximum seismic efficiency. Spectral bandwidths and the determination of radiated energy and apparent stress are contrasted to time domain pulse widths and the determination of source size and static stress drop in these models. The consequences of a reduced number of source parameters are examined, in particular for circular models and point source approximations; in these cases, results for radiated energy can be obtained in closed form. The scaling of radiated energy with moment is assumed to be linear for simple sources, but in stochastic models of complex sources the scaling may be between linear and quadratic. A relatively large increase of radiated energy with moment would be accompanied by an underestimate of source size and an overestimate of stress drop. However, the determination of radiated energy may still be correct.


Sign in / Sign up

Export Citation Format

Share Document