Synchronization of earthquake cycles of adjacent segments on oceanic transform faults revealed by numerical simulation in the framework of rate-and-state friction

2020 ◽  
Author(s):  
Meng Wei ◽  
Pengcheng Shi
2020 ◽  
Author(s):  
Meng Wei ◽  
Pengcheng Shi

<p>Synchronization behavior of large earthquakes, rupture of nearby faults close in time for many cycles, has been reported in many fault systems. The general idea is that the faults in the system have similar repeating interval and are positively coupled through stress interaction. However, many details of such synchronization remain unknown. Here, we built numerical models in the framework of rate-and-state friction to simulate earthquake cycles on the west Gofar fault, an oceanic transform fault in the East Pacific Rise. Our model is consisted of two seismic segments, separated by a creeping segment, for which the size and location is constrained by seismic data. The parameters in the seismic segments were set to reproduce M6 earthquakes every 5 years, to be consistent with observation. We varied the parameters in the creeping segment to understand its role on earthquake synchronization. We found that the width and the strength of the creeping segment will determine the synchronization of earthquake cycles on the two seismic segments. When the creeping segment is relatively narrow or weak, the system will become synchronized quickly and the synchronization remains for many cycles. When it is relatively wide or strong, the earthquake cycles on the two segments are not related but could be synchronized by chance. In both cases, earthquakes tend to rupture the entire seismic segment. Between these two end-member situations, the system fluctuated between synchronization and non-synchronization on the time scale of 5-10 cycles. The switch always happens when the partial rupture of the seismic segment occurs, resulting in moderate size earthquakes (M4-5) and earthquake cycle shift, which is likely caused by stress interaction through the creeping segment. Here, we conclude that the co-seismic slip and aseismic after slip in the creeping segment could promote the synchronization of earthquake cycles on oceanic transform faults, and likely in other tectonic systems. In addition, the average seismic ratio of the entire fault can be quite low, ranging between 0.2-0.4 because of the barrier segment. We suggest that the existence of creep segments contributed significantly to the well-observed low seismic ratio on oceanic transform faults.</p>


2009 ◽  
Vol 4 (2) ◽  
pp. 99-105
Author(s):  
Kazuro Hirahara ◽  

Recent earthquake cycle simulation based on laboratory derived rate and state friction laws with super-parallel computers have successfully reproduced historical earthquake cycles. Earthquake cycle simulation is thus a powerful tool for providing information on the occurrence of the next Nankai megathrust earthquake, if simulation is combined with data assimilation for historical data and recently ongoing crustal activity data observed by networks extending from the land to the ocean floor. Present earthquake cycle simulation assumes simplifications in calculation, however, that differ from actual complex situations. Executing simulation relaxing these simplifications requires huge computational demands, and is difficult with present supercomputers. Looking toward advanced simulation of Nankai megathrust earthquake cycles with next-generation petaflop supercomputers, we present 1) an evaluation of effects of the actual medium in earthquake cycle simulation, 2) improved deformation data with GPS and InSAR and of inversion for estimating frictional parameters, and 3) the estimation of the occurrence of large inland earthquakes in southwest Japan and of Nankai megathrust earthquakes.


2009 ◽  
Vol 00 (00) ◽  
pp. 090904073309027-8
Author(s):  
H.W. Wang ◽  
S. Kyriacos ◽  
L. Cartilier

Sign in / Sign up

Export Citation Format

Share Document