scholarly journals The influence of magnetic field topology and orientation on the 1 distribution of thermal electrons in the Martian magnetotail 2

2020 ◽  
Author(s):  
Murti Nauth ◽  
Christopher M Fowler ◽  
Laila Andersson ◽  
Gina A Dibraccio ◽  
Shaosui Xu ◽  
...  
2012 ◽  
Vol 38 (8) ◽  
pp. 531-542 ◽  
Author(s):  
N. G. Makarenko ◽  
I. S. Knyazeva ◽  
L. M. Karimova

2011 ◽  
Vol 741 (1) ◽  
pp. 27 ◽  
Author(s):  
M. McLean ◽  
E. Berger ◽  
J. Irwin ◽  
J. Forbrich ◽  
A. Reiners

2018 ◽  
Vol 1100 ◽  
pp. 012007
Author(s):  
G Consolini ◽  
V Quattrociocchi ◽  
M F Marcucci

2019 ◽  
Vol 82 ◽  
pp. 365-371
Author(s):  
K. Augustson ◽  
S. Mathis ◽  
A. Strugarek

This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. One such instability is the purely magnetic Tayler instability, which can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations. However, most of the magnetic field configurations observed at the surface of massive stars are non-axisymmetric. Thus, extending earlier studies in spherical geometry, we introduce a formulation for the global change in the potential energy contained in a convectively-stable region for both axisymmetric and non-axisymmetric magnetic fields.


2012 ◽  
Vol 22 (3) ◽  
pp. 4904105-4904105 ◽  
Author(s):  
Chang Liu ◽  
Zuo Gu ◽  
Kan Xie ◽  
Yunkui Sun ◽  
Haibin Tang

2016 ◽  
Vol 12 (S327) ◽  
pp. 77-81
Author(s):  
S. Candelaresi ◽  
D. I. Pontin ◽  
G. Hornig

AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.


1987 ◽  
Vol 92 (A11) ◽  
pp. 12352 ◽  
Author(s):  
W. R. Coley ◽  
R. A. Heelis ◽  
W. B. Hanson ◽  
P. H. Reiff ◽  
J. R. Sharber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document