scholarly journals On the stability of a general magnetic field topology in stellar radiative zones

2019 ◽  
Vol 82 ◽  
pp. 365-371
Author(s):  
K. Augustson ◽  
S. Mathis ◽  
A. Strugarek

This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. One such instability is the purely magnetic Tayler instability, which can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations. However, most of the magnetic field configurations observed at the surface of massive stars are non-axisymmetric. Thus, extending earlier studies in spherical geometry, we introduce a formulation for the global change in the potential energy contained in a convectively-stable region for both axisymmetric and non-axisymmetric magnetic fields.

Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2016 ◽  
Vol 12 (S327) ◽  
pp. 77-81
Author(s):  
S. Candelaresi ◽  
D. I. Pontin ◽  
G. Hornig

AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.


1975 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
B. B. Chakraborty ◽  
H. K. S. Iyengar

This paper studies the hydromagnetic stability of a cylindrical jet of a perfectly-conducting, inviscid and compressible fluid. The fluid velocities and magnetic fields, inside and outside the jet, are uniform and in the axial direction, with possible discontinuities in their values across the jet surface. For large wavelength disturbances, the jet behaves as though it were incompressible. Numerical evaluation of the roots of the dispersion relation for a number of different magnetic-field strengths and jet velocities, but for disturbances of finite ranges of wavenumbers, indicates that the jet is stable against axisymmetric disturbances, but instability is present for asymmetric disturbances when the magnetic fields are sufficiently small. The magnetic field is found to have a stabilizinginfluence when compressibility is not very large; for high compressibility, it may have even a destabilizing effect. The paper explains physically the roles of compressibility and the magnetic field in bringing about the stability of the jet. When the wavelengths of disturbances are small, the dispersion relation reduces to that for a two-dimensional jet and a vortex sheet; and the results for these cases are known from earlier studies.


The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.


Several recent investigations in geophysics and astrophysics have involved a consideration of the hydrodynamics of a fluid which is a good electrical conductor. In this paper one of the problems which seem likely to arise in such investigations is discussed. The fluid is assumed to be incompressible and in homogeneous turbulent motion, and externally imposed electric and magnetic fields are assumed to be absent. The equations governing the interaction of the electromagnetic field and the turbulent motion are set up with the same assumptions as are used to obtain the Maxwell and current flow equations for a metallic conductor. It is shown that the equation for the magnetic field is identical in form with that for the vorticity in a non-conducting fluid; immediate deductions are that lines of magnetic force move with the fluid when the conductivity is infinite, and that the small-scale components of the turbulence have the more powerful effect on the magnetic field. The first question considered is the stability of a purely hydrodynamical system to small disturbing magnetic fields, and it is shown that the magnetic energy of the disturbance will increase provided the conductivity is greater than a critical value determined by the viscosity of the fluid. The rate of growth of magnetic energy is approximately exponential, with a doubling time which can be simply related to the properties of the turbulence. General mechanical considerations suggest that a steady state is reached when the magnetic field has as much energy as is contained in the small-scale components of the turbulence. Estimates of this amount of energy and of the region of the spectrum in which it will lie are given in terms of observable properties of the turbulence.


2014 ◽  
Vol 10 (S305) ◽  
pp. 61-66 ◽  
Author(s):  
Coralie Neiner ◽  
Stéphane Mathis ◽  
Evelyne Alecian ◽  
Constance Emeriau ◽  
Jason Grunhut ◽  
...  

AbstractObservations of stable mainly dipolar magnetic fields at the surface of ~7% of single hot stars indicate that these fields are of fossil origin, i.e. they descend from the seed field in the molecular clouds from which the stars were formed. The recent results confirm this theory. First, theoretical work and numerical simulations confirm that the properties of the observed fields correspond to those expected from fossil fields. They also showed that rapid rotation does not modify the surface dipolar magnetic configurations, but hinders the stability of fossil fields. This explains the lack of correlation between the magnetic field properties and stellar properties in massive stars. It may also explain the lack of detections of magnetic fields in Be stars, which rotate close to their break-up velocity. In addition, observations by the BinaMIcS collaboration of hot stars in binary systems show that the fraction of those hosting detectable magnetic fields is much smaller than for single hot stars. This could be related to results obtained in simulations of massive star formation, which show that the stronger the magnetic field in the original molecular cloud, the more difficult it is to fragment massive cores to form several stars. Therefore, more and more arguments support the fossil field theory.


1958 ◽  
Vol 6 ◽  
pp. 33-45
Author(s):  
A. J. Kipper

1. The behaviour of the magnetic field of a star was investigated by Cowling, Lamb and Wrubel on the assumption of the star as a solid body and on the assumption that the field variations caused by the extinction do not create any motions of the stellar matter. The important results obtained make possible the interpretation of magneto-hydrodynamical processes in stars only quite roughly. When motions of stellar matter caused by the electromagnetic forces are taken into account new properties may be revealed and the non-stability of the magneto-hydrodynamical processes in stars established. Entangled magnetic fields are the general expression of non-stability.2. The mathematical criterion of a confused stellar magnetic field is given in the preceding paper from the magneto-hydrodynamical equations for an ideal incompressible fluid. The conception of a confused field as a superposition of various fields of different scales is introduced.3. It is known that the presence of a magnetic field causes an increase of the stability of hydrodynamical processes, as compared with processes in the absence of a magnetic field. It may most probably be concluded that the extent of confusion of a magnetic field is not the same, as it happens as a result of ordinary turbulent motions in a liquid. However, owing to magneto-hydrodynamical formulae, it may be stated in the present paper that if the field confusion is considered as a superposition of fields of different dimensions and not as a field of entangled magnetic lines, no stability of the above kind can be expected.4. The theory of a totally entangled magnetic field, as a field in a state of maximum confusion is examined. A very close similarity between a totally entangled magnetic field and the turbulent motion in a viscous liquid is established. The question of the time of extinction of a magnetic field of a star is discussed.Note. Sections 1, 2, 4 of the paper are based upon the results obtained by the author, reported by him at the 4th Cosmological Conference. Section 3 contains unpublished results.


2014 ◽  
Vol 9 (S307) ◽  
pp. 367-368 ◽  
Author(s):  
A. Blazère ◽  
C. Neiner ◽  
J-C. Bouret ◽  
A. Tkachenko ◽  

AbstractMagnetic fields play a significant role in the evolution of massive stars. About 7% of massive stars are found to be magnetic at a level detectable with current instrumentation (Wade et al. 2013) and only a few magnetic O stars are known. Detecting magnetic field in O stars is particularly challenging because they only have few, often broad, lines to measure the field, which leads to a deficit in the knowledge of the basic magnetic properties of O stars. We present new spectropolarimetric Narval observations of ζ Ori A. We also provide a new analysis of both the new and older data taking binarity into account. The aim of this study was to confirm the presence of a magnetic field in ζ Ori A. We identify that it belongs to ζ Ori Aa and characterize it.


2014 ◽  
Vol 14 (08) ◽  
pp. 1440017 ◽  
Author(s):  
Krzysztof Kucab ◽  
Wioletta Paśko ◽  
Klaudiusz Majchrowski ◽  
Grzegorz Górski

We examine the influence of potential energy asymmetry on the power generated by energy harvesting system. We present results for the system consisting of two masses (magnets) attached to piezoelastic oscillators which vibrate in the magnetic field produced by the magnets attached directly to the harvesting device. The nonlinearity of the system is achieved by the variable strength of the magnetic fields produced by the static magnets. We additionally examine the influence of disproportion between piezoelastic beams stiffness, which is described by the mistuning parameter.


1994 ◽  
Vol 265 ◽  
pp. 245-263 ◽  
Author(s):  
Antonio Castellanos ◽  
Heliodoro GonzÁalez

The natural frequencies and stability criterion for cylinderical inviscid conducting liquid bridges and jets subjected to axial alternating magnetic fields in the absence of gravity are obtained. For typical conducting materials a frequency greater than 100 Hz is enough for a quasi-steady approximation to be valid. On the other hand, for frequencies greater than 105 Hz an inviscid model may not be justified owing to competition between viscous and magnetic forces in the vicinity of the free surface. The stability is governed by two independent parameters. One is the magnetic Bond number, which measures the relative influence of magnetic and capillary forces, and the other is the relative penetration length, which is given by the ratio of the penetration length of the magnetic field to the radius. The magnetic Bond number is proportional to the squared amplitude of the magnetic field and inversely proportional to the surface tension. The relative penetration length is inversely proportional to square root of the product of the frequency of the applied field and the electrical conductivity of the liquid. It is shown in this work that stability is enhanced by either increasing the magnetic Bond number or decreasing the relative penetration length.


Sign in / Sign up

Export Citation Format

Share Document