An umbrella cloud model to explain thickness and grain size variation in tephra deposits: Pululagua (Ecuador)

2020 ◽  
Author(s):  
Robert Constantinescu
Author(s):  
Serafino Caruso ◽  
Stano Imbrogno

AbstractGrain refinement by severe plastic deformation (SPD) techniques, as a mechanism to control microstructure (recrystallization, grain size changes,…) and mechanical properties (yield strength, ultimate tensile strength, strain, hardness variation…) of pure aluminium conductor wires, is a topic of great interest for both academic and industrial research activities. This paper presents an innovative finite element (FE) model able to describe the microstructural evolution and the continuous dynamic recrystallization (CDRX) that occur during equal channel angular drawing (ECAD) of commercial 1370 pure aluminium (99.7% Al). A user subroutine has been developed based on the continuum mechanical model and the Hall-Petch (H-P) equations to predict grain size variation and hardness change. The model is validated by comparison with the experimental results and a predictive analysis is conducted varying the channel die angles. The study provides an accurate prediction of both the thermo-mechanical and the microstructural phenomena that occur during the process characterized by large plastic deformation.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Chin-Ping Lin ◽  
Yu-Min Wang ◽  
Samkele S. Tfwala ◽  
Ching-Nuo Chen

Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively.


2021 ◽  
Vol 38 (1) ◽  
pp. 33-40
Author(s):  
Sreejita Chatterjee ◽  
Dhiren Kumar Ruidas

A significant event of marine transgression took place in Central India during Late Turonian-Coniacian. Fossiliferous marine succession of Bagh Group is one of the few carbonate successions exposed in peninsular India which was in focus of the current study for understanding this event. The signatures of this event were identified in the carbonate succession. The carbonates of Bagh Group are composed of two formations: the lower part is represented by Nodular limestone Formation which is overlain by Bryozoan limestone Formation at the top. On the basis of grain size variation and sedimentary structures, the Nodular limestone is divisible into three facies: facies ‘A’, facies ‘B’ and facies ‘C’. A hardground exists between facies B and facies C. Lack of sedimentary structures and high mud content indicates low energy depositional setting for the Nodular limestone Formation. Similarly, Bryozoan limestone Formation is divisible into five facies: facies ‘D’, facies ‘E’, facies ‘F’, facies ‘G’ and facies ‘H’ based on grain size variation and sedimentary structures. All of these five facies are fossiliferous. Glauconites are present within facies ‘G’ and have two modes of occurrence - as infilling within Bryozoan limestone and as altered feldspar. Presence of both small- and large-scale cross-stratification in Bryozoan limestone with lesser mud content are indicative of high energy shallow marine conditions. Large-scale cross-stratifications are possibly representing tidal bars while the small scale cross stratifications are formed in inter bar setting. Presence of reactivation surfaces within facies ‘E’ also supports their tidal origin. Increase in depositional energy condition is also evident from dominated by packstone facies.


2020 ◽  
Vol 37 (2) ◽  
pp. 115-130
Author(s):  
Shyam Narayan Mude ◽  
Shyam Yawale ◽  
Vishal Choudhari

Sedimentological and Geochemical Charectesization  of Manaveli and Cuddalore Formations, Puducherry Basin, India   Shyam N. Mude, Shyam Yawale and Vishal Choudhari   Department of Geology, Fergusson College (Autonomous), Pune- 411004, India Email: [email protected]; [email protected]   Abstract: The lithostratigraphically rocks of Puducherry basin (Sub-basin of Cauvery Basin) have been classified as Valudavur, Mettuveli, Karasur, Manaveli, Cuddalore formations in ascending order of deposition. The sedimentological and geochemical studies of sediments from Manavali (Paleocene) and Cuddalore (Mio-Pliocene) formations were carried out to understand grain size variation and distribution of major oxides and trace elements.  The sieve analysis was used to study grain size variation and on the basis of grain sizes various geo-statistical parameters were calculated to understand depositional environment. The discriminant function analysis of the sediments from the Cuddalore Formation infers that mostly the sedimentation was occurred in fluvio-deltaic environment with incursions of shallow marine environment whereas bivariate plots suggests that the deposition was occurred in riverine to deltaic environment. The major element geochemistry of the Manaveli and Cuddalore formations have been carried out to understand the provenance, paleoclimate and source area weathering conditions. The values of CIA (Chemical Index of Alteration), CIW (Chemical Index of Weathering), ICV (Index of Compositional Variability) and PIA (Plagioclase Index of Alteration) of the sediments infer high weathering was occurred in source area of sediments for Manaveli and Cuddalore formations.  The ratio (Al2O3+K2O+Na2O)/SiO2 indicate semi-humid climatic conditions during deposition of Cuddalore Formation whereas Manaveli Formation was deposited in semi-arid climatic conditions. The discriminant function diagram (A-CN-K Plot), suggest Quartzose sedimentary provenance for Cuddalore and Mafic igneous provenance for Manaveli Formation.     Keywords:  Grain Size, Geochemistry, Manaveli, Cuddalore, Puducherry Basin


Author(s):  
Helmut G. F. Winkler

It is a familiar fact that in dikes, lava-flows, and sills the grain-size of the individual minerals normally varies according to the distance from the contacts. At or near the margins of the igneous body the grainsize is usually very much less than in the centre, and this phenomenon has been attributed to differences in the cooling-velocities at these spots. On the basis of measurements carried out by Queneau (8) the opinion seems to have been formed that the crystal-size always shows a progressive increase from the contacts towards the centre. This is not so, however, for as Lane (6) has shown, the crystal-size may increase to a maximum at a certain distance from the margin, and thereafter decrease again towards the centre of the intrusion. Apart from these investigations, carried out by Queneau and Lane, the only additioual quantitative data oil crystal-size variation known to the writer concerns a series of measurements made on an olivine-diabase by B. H. Dollen, under the direction of H. L. Alling.


2015 ◽  
Vol 19 (3) ◽  
pp. 307-320 ◽  
Author(s):  
Pedro Narra ◽  
Carlos Coelho ◽  
Jorge Fonseca

2018 ◽  
Vol 20 ◽  
pp. 400-410 ◽  
Author(s):  
Giedre Motuzaite Matuzeviciute ◽  
Aida Abdykanova ◽  
Shogo Kume ◽  
Yoshihiro Nishiaki ◽  
Kubatbek Tabaldiev

2013 ◽  
Vol 54 (9) ◽  
pp. 1605-1611 ◽  
Author(s):  
Satoshi Okubo ◽  
Yoji Miyajima ◽  
Toshiyuki Fujii ◽  
Susumu Onaka ◽  
Masaharu Kato

Sign in / Sign up

Export Citation Format

Share Document