Cloud Condensation Model from Radiosonde and Ceilometer Measurements Comparison

2021 ◽  
Author(s):  
Rani Arielly ◽  
Adva Baratz ◽  
Ran Aharoni ◽  
Ofir Shoshanim
Keyword(s):  
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Yusuke Yamada

Abstract We investigate supersymmetry (SUSY) breaking scenarios where both SUSY and Lorentz symmetry are broken spontaneously. For concreteness, we propose models in which scalar fluid or vector condensation breaks Lorentz symmetry and accordingly SUSY. Then, we examine whether such scenarios are viable for realistic model buildings. We find, however, that the scalar fluid model suffers from several issues. Then, we extend it to a vector condensation model, which avoids the issues in the scalar fluid case. We show that accelerated expansion and soft SUSY breaking in matter sector can be achieved. In our simple setup, the soft SUSY breaking is constrained to be less than $$ \mathcal{O}(100)\mathrm{TeV} $$ O 100 TeV from the constraints on modification of gravity.


2018 ◽  
Vol 167 ◽  
pp. 158-165 ◽  
Author(s):  
J.R. Serrano ◽  
P. Piqueras ◽  
R. Navarro ◽  
D. Tarí ◽  
C.M. Meano

Langmuir ◽  
2000 ◽  
Vol 16 (14) ◽  
pp. 6064-6066 ◽  
Author(s):  
Hideki Kanda ◽  
Minoru Miyahara ◽  
Ko Higashitani

Author(s):  
Takashi Furusawa ◽  
Hironori Miyazawa ◽  
Satoru Yamamoto

We recently proposed a numerical method for simulating flows of supercritical CO2 based on a preconditioning method and the thermophysical models programed in a program package for thermophysical properties of fluids (PROPATH). In this study, this method is applied to the investigation of cascade channel. Numerical results obtained by assuming supercritical pressure conditions indicate that the normal shock generated in the cascade channel deeply depends on the pressure condition. In particular, the speed of sound varying with the pressure variation at the supercritical state is a key thermophysical property which changes the flow field in the cascade channel. In addition, we also simulate those flows with nonequilibrium condensation in which the inlet pressure and temperature approaching to those of the critical point are specified. Then a nonequilibrium condensation model developed by our group is further applied to the numerical method. CO2 condensation observed in a case indicates that condensation occurs at a local region near the leading edge due to the flow expansion; the droplets soon grow at the local region and streams downward with keeping almost the same mass fraction.


Author(s):  
Changhyun Kim ◽  
JaeHyeon Park ◽  
Jehyun Baek

Abstract When the steam is used in fluid machinery, the phase-transition can occur and it affects not only the flow fields but also the machine performance. Therefore, to achieve accurate prediction on steam condensing flow using computational fluid dynamics, the phase-transition phenomena should be considered and the proper model which can reflect the non-equilibrium characterisic is required. In the previous study of us, a non-equilibrium condensation model was implemented in T-flow, and several cases on nozzles and cascades were under the consideration. The model showed quite good predictions on the pressure variations including condensation shock. However, the pressure discrepancies in downstream regions were found in all nozzle cases, and the use of ideal gas law as equation of state seemed to be responsible for them. Therefore, IAPWS-95 or IF97 are usually adopted for wet-steam codes, but it entails highly increased computational costs. In this study, the wet-steam model is modified to ensure the accuracy of pressure in nozzle’s downstream region while maintaining the usage of ideal gas equation, which has a benefit to solve the problem quickly. The numerical results of the nozzles are compared with those of the previous wet-steam model, and the results of equilibrium condensation model are also appended. As a result, the accurate predictions are feasible by using the modified non-equilibrium condensation model. In addition, the corrections on liquid surface tension and droplet growth rate are carried out for underestimated droplet sizes and enthalpy, entropy changes throughout the nozzles are investigated.


Sign in / Sign up

Export Citation Format

Share Document