scholarly journals Influence of Pleistocene sea-level lows on offshore fresh groundwater reservoirs - a numerical case study on the New Jersey shelf

2021 ◽  
Author(s):  
Ariel T Thomas ◽  
Sönke Reiche ◽  
Christoph Clauser
2021 ◽  
Author(s):  
Ariel Thomas ◽  
Sönke Reiche ◽  
Christoph Clauser

<p>Offshore fresh groundwater reservoirs have been identified on continental shelves in several regions of the world. In many cases, sea-level change over geologic time-scales has been identified as a key factor in the emplacement of these freshwater systems. This numerical study analyzes a range of paleo-hydrogeological conditions on the New Jersey transect during the late Pleistocene, during which vast sections of the shelf were sub-aerially exposed. Coupled variable-density flow and heat transport simulations were conducted on a geologically representative 2D shelf model using SHEMAT-Suite. The model combines sequence stratigraphic interpretation of 2D depth migrated seismic lines and a stochastic facies distribution, with petrophysical properties derived from IODP Expedition 313 well data. The study considers a 60<sub></sub>000 year period of surface meteoric recharge, and the subsequent marine transgression from 12 000 years ago to present-day. A sensitivity analysis is conducted for key factors that influence offshore freshened groundwater emplacement during recharge phase: (1) topography-driven flow, and (2) permeability anisotropy. Systematically introducing anisotropy resulted in a 11 % – 31 % decrease in emplaced volume relative to the base-case. The results were analysed to determine whether the late Pleistocene sea-level lowstand drove enough freshwater emplacement that can explain the complex present-day observations. All of the simulated scenarios indicate that surface recharge lead to freshening of sediments across the entire transect during this period, even in case of high permeability anisotropy. The observations also suggest that the cyclical flushing and re-salinification of shelf sediments that takes place over glacial – interglacial cycles is an asymmetrical process, which favours storage of freshened pore fluid in the long run.</p>


2019 ◽  
Vol 9 (1) ◽  
pp. 154-173
Author(s):  
I. Mintourakis ◽  
G. Panou ◽  
D. Paradissis

Abstract Precise knowledge of the oceanic Mean Dynamic Topography (MDT) is crucial for a number of geodetic applications, such as vertical datum unification and marine geoid modelling. The lack of gravity surveys over many regions of the Greek seas and the incapacity of the space borne gradiometry/gravity missions to resolve the small and medium wavelengths of the geoid led to the investigation of the oceanographic approach for computing the MDT. We compute two new regional MDT surfaces after averaging, for given epochs, the periodic gridded solutions of the Dynamic Ocean Topography (DOT) provided by two ocean circulation models. These newly developed regional MDT surfaces are compared to three state-of-theart models, which represent the oceanographic, the geodetic and the mixed oceanographic/geodetic approaches in the implementation of the MDT, respectively. Based on these comparisons, we discuss the differences between the three approaches for the case study area and we present some valuable findings regarding the computation of the regional MDT. Furthermore, in order to have an estimate of the precision of the oceanographic approach, we apply extensive evaluation tests on the ability of the two regional ocean circulation models to track the sea level variations by comparing their solutions to tide gauge records and satellite altimetry Sea Level Anomalies (SLA) data. The overall findings support the claim that, for the computation of the MDT surface due to the lack of geodetic data and to limitations of the Global Geopotential Models (GGMs) in the case study area, the oceanographic approach is preferable over the geodetic or the mixed oceano-graphic/geodetic approaches.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
David Revell ◽  
Phil King ◽  
Jeff Giliam ◽  
Juliano Calil ◽  
Sarah Jenkins ◽  
...  

Sea level rise increases community risks from erosion, wave flooding, and tides. Current management typically protects existing development and infrastructure with coastal armoring. These practices ignore long-term impacts to public trust coastal recreation and natural ecosystems. This adaptation framework models physical responses to the public beach and private upland for each adaptation strategy over time, linking physical changes in widths to damages, economic costs, and benefits from beach recreation and nature using low-lying Imperial Beach, California, as a case study. Available coastal hazard models identified community vulnerabilities, and local risk communication engagement prioritized five adaptation approaches—armoring, nourishment, living shorelines, groins, and managed retreat. This framework innovates using replacement cost as a proxy for ecosystem services normally not valued and examines a managed retreat policy approach using a public buyout and rent-back option. Specific methods and economic values used in the analysis need more research and innovation, but the framework provides a scalable methodology to guide coastal adaptation planning everywhere. Case study results suggest that coastal armoring provides the least public benefits over time. Living shoreline approaches show greater public benefits, while managed retreat, implemented sooner, provides the best long-term adaptation strategy to protect community identity and public trust resources.


Sign in / Sign up

Export Citation Format

Share Document