scholarly journals First comparison of travelling atmospheric disturbances observed in the middle thermosphere by GOLD to travelling ionospheric disturbances seen in ground-based total electron content observations

2021 ◽  
Author(s):  
Scott L England ◽  
Katelynn R Greer ◽  
Shun-Rong Zhang ◽  
Joseph S. Evans ◽  
Stanley C. Solomon ◽  
...  
2018 ◽  
Vol 14 (2) ◽  
pp. 111
Author(s):  
Sri Ekawati

The solar flare is potential to cause sudden increase of the electron density in the ionosphere,particularly in D layer, known as Sudden Ionospheric Disturbances (SID). This increase of electron density occurs not only in the ionospheric D layer but also in the ionospheric E and F layers. Total Electron Content (TEC) measured by GPS is the total number of electrons from D to F layer. The aim of this research is to study the effect of solar flare x-rays, greater than M5 class in 2015, on ionospheric TEC over Bandung and Manado. This paper presents the preliminary result of ionospheric TEC response on solar flare occurrence over Indonesia. The ionospheric TEC data is derived from GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at Bandung (-6.90o S;107.6o E geomagnetic latitude 16.54o S) and Manado (1.48o N; 124.85o E geomagnetic latitude 7.7o S). The solar x-rays flares classes analyzed where M5.1 on 10 March 2015 and M7.9 on 25 June 2015. Slant TEC (STEC) values where calculated to obtain Vertical TEC (VTEC) and the Differential of the VTEC (DVTEC) per PRN satellite for further analysis. The results showed that immediately after the flare, there where sudden enhancement of the VTEC and the DVTEC (over Bandung and Manado) at the same time. The time delay of ionospheric TEC response on M5.1 flare was approximately 2 minutes, then the VTEC increased by 0.5 TECU and the DVTEC rose sharply by 0.5 – 0.6 TECU/minutes. Moreover, the time delay after the M7.9 flare was approximately 11 minutes, then the VTEC increased by 1 TECU and the DVTEC rose sharply by 0.6 – 0.9 TECU/minutes. ABSTRAK Flare matahari berpotensi meningkatkan kerapatan elektron ionosfer secara mendadak, khususnya di lapisan D, yang dikenal sebagai Sudden Ionospheric Disturbances (SID). Peningkatan kerapatan elektron tersebut terjadi tidak hanya di lapisan D, tetapi juga di lapisan E dan F ionosfer. Total Electron Content (TEC) dari GPS merupakan jumlah banyaknya elektron total dari lapisan D sampai lapisan F. Penelitian ini bertujuan mengetahui efek flare, yang lebih besar dari kelas M5 tahun 2015, terhadap TEC ionosfer di atas Bandung dan Manado. Makalah ini merupakan hasil awal dari respon TEC ionosfer terhadap fenomena flare di atas Indonesia. Data TEC ionosfer diperoleh dari penerima GPS Ionospheric Scintillation and TEC Monitor (GISTM) di Bandung (-6,90o S; 107,60o E lintang geomagnet 16,54o LS) dan Manado (1,48oLU;124,85oBT lintang geomagnet 7,7o LS) dikaitkan dengan kejadian flare kelas M5.1 pada tanggal 10 Maret 2015 dan kelas M7.9 pada tanggal 25 Juni 2015. Nilai Slant TEC (STEC) dihitung untuk memperoleh nilai Vertical TEC (VTEC), kemudian nilai Differential of VTEC (DVTEC) per PRN satelit diperoleh untuk analisis selanjutnya. Hasil menunjukkan segera setelah terjadi flare, terjadi peningkatan VTEC dan DVTEC (di atas Bandung dan Manado) secara mendadak pada waktu yang sama. Waktu tunda dari respon TEC ionosfer setelah terjadi flare M5.1 adalah sekitar 2 menit, kemudian VTEC meningkat sebesar 0,5 TECU dan DVTEC meningkat secara tajam sebesar 0,5 – 0,6 TECU/menit. Sedangkan, waktu tunda setelah terjadi flare M7.9 adalah 11 menit, kemudian VTEC meningkat sebesar 1 TECU dan DVTEC meningkat secara tajam sebesar 0,6 – 0,9 TECU/menit.


2004 ◽  
Vol 22 (1) ◽  
pp. 47-62 ◽  
Author(s):  
E. L. Afraimovich ◽  
E. I. Astafieva ◽  
S. V. Voyeikov

Abstract. We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs) that manifest themselves in total electron content (TEC) variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS). The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m), exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW) generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s) and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques) - Radio science (ionospheric propagation)


2016 ◽  
Vol 2 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Наталья Перевалова ◽  
Natalia Perevalova ◽  
Илья Едемский ◽  
Ilya Edemsky ◽  
Ольга Тимофеева ◽  
...  

We study the level of total electron content (TEC) disturbance in ionospheric mid-latitude and high-latitude regions during 2013. TEC behavior is calculated using data from two GPS stations: MOND (Mondy) and NRIL (Norilsk). TEC variations are calculated from two-frequency phase measurements for all radio rays. We analyze the TEC variations in two time ranges: 10 and 40 min. These ranges correspond to middle- and large-scale ionospheric disturbances respectively. The TEC disturbance level is characterized using the special index WTEC. WTEC allows us to receive multi-day continuous series of average TEC variation intensity. We reveal that at high latitudes WTEC variations agree well with AE ones. The correlation between WTEC and Dst variations is much less. The minimum level of TEC disturbance is independent of the season in the Arctic region; diurnal WTEC variations are more pronounced for medium-scale ionospheric disturbances than for large-scale ones. At mid-latitudes, the WTEC behavior agrees well with the Dst and Kp variations only during strong magnetic storms. The minimum level of TEC disturbance is higher in summer than in winter. At mid-latitudes, the sunset terminator generates gravitational waves. In the Arctic region, terminator-generated waves are not observed.


2019 ◽  
Vol 37 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Carlos Sotomayor-Beltran ◽  
Laberiano Andrade-Arenas

Abstract. In this work, the results of the analysis on total electron content (TEC) data before, during and after the geomagnetic storm of 8 September 2017 are reported. One of the responses to geomagnetic storms due to the southern vertical interplanetary magnetic field (Bz) is the enhancement of the electron density in the ionosphere. Vertical TEC (VTEC) from the Center for Orbit determination in Europe (CODE) along with a statistical method were used to identify positive and/or negative ionospheric storms in response to the geomagnetic storm of 8 September 2017. When analyzing the response to the storm of 8 September 2017 it was indeed possible to observe an enhancement of the equatorial ionization anomaly (EIA); however, what was unexpected was the identification of a local TEC enhancement (LTE) to the south of the EIA (∼40∘ S, right over New Zealand and extending towards the southeastern coast of Australia and also eastward towards the Pacific). This was a very transitory LTE that lasted approximately 4 h, starting at ∼ 02:00 UT on 8 September where its maximum VTEC increase was of 241.2 %. Using the same statistical method, comparable LTEs in a similar category geomagnetic storm, the 2015 St. Patrick's Day storm, were looked for. However, for the aforementioned storm no LTEs were identified. As also indicated in a past recent study for a LTE detected during the 15 August 2015 geomagnetic storm, an association between the LTE and the excursion of Bz seen during the 8 September 2017 storm was observed as well. Furthermore, it is very likely that a direct impact of the super-fountain effect along with traveling ionospheric disturbances may be playing an important role in the production of this LTE. Finally, it is indicated that the 8 September 2017 LTE is the second one to be detected since the year 2016.


Sign in / Sign up

Export Citation Format

Share Document