scholarly journals Shear-convection interactions, and orientation of tropical squall lines

2021 ◽  
Author(s):  
Sophie Abramian ◽  
Caroline Muller ◽  
Camille Risi
Keyword(s):  
1958 ◽  
Vol 39 (3) ◽  
pp. 129-136 ◽  
Author(s):  
C. W. Newton ◽  
Sey Katz

By means of hourly rainfall data from the Hydroclimatic Network, the motions of large rainstorms, of the kind associated with squall lines, are examined in relation to the winds aloft. Very little correlation is found between the speed of movement of the rainstorms and the wind speed at any level, although the fastest moving storms were associated with strong winds aloft. Significant correlation is found between direction of motion of rainstorms, and wind direction at 700 mb or higher levels. On the average, the rainstorms move with an appreciable component toward right of the wind direction. The difference between these results, and those from other studies based on small precipitation areas, is ascribed to propagation. The mechanism involved is discussed briefly.


Weather ◽  
1966 ◽  
Vol 21 (5) ◽  
pp. 181-186 ◽  
Author(s):  
E. R. Lichtenstein ◽  
M. L. Schwarzkopf
Keyword(s):  

Author(s):  
Fan Wu ◽  
Kelly Lombardo

AbstractA mechanism for precipitation enhancement in squall lines moving over mountainous coastal regions is quantified through idealized numerical simulations. Storm intensity and precipitation peak over the sloping terrain as storms descend from an elevated plateau toward the coastline and encounter the marine atmospheric boundary layer (MABL). Storms are most intense as they encounter the deepest MABLs. As the descending storm outflow collides with a moving MABL (sea breeze), surface and low-level air parcels initially accelerate upward, though their ultimate trajectory is governed by the magnitude of the negative non-hydrostatic inertial pressure perturbation behind the cold pool leading edge. For shallow MABLs, the baroclinic gradient across the gust front generates large horizontal vorticity, a low-level negative pressure perturbation, and thus a downward acceleration of air parcels following their initial ascent. A deep MABL reduces the baroclinically-generated vorticity, leading to a weaker pressure perturbation and minimal downward acceleration, allowing air to accelerate into a storm’s updraft.Once storms move away from the terrain base and over the full depth of the MABLs, storms over the deepest MABLs decay most rapidly, while those over the shallowest MABLs initially intensify. Though elevated ascent exists above all MABLs, the deepest MABLs substantially reduce the depth of the high-θe layer above the MABLs and limit instability. This relationship is insensitive to MABL temperature, even though surface-based ascent is present for the less cold MABLs, the MABL thermal deficit is smaller, and convective available potential energy (CAPE) is higher.


1993 ◽  
Vol 121 (3) ◽  
pp. 726-733 ◽  
Author(s):  
George T. J. Chen ◽  
H. C. Chou
Keyword(s):  

2021 ◽  
Author(s):  
Divya S Vidyadharan ◽  
Aaron Xavier ◽  
Blossom Treesa Bastian ◽  
Ajay Ragh ◽  
Naveen Chittilapilly

<div>Radar-based precipitation nowcasting refers to predicting rain for a short period of time using radar reflectivity images. For dynamic nowcasting, motion fields can be extrapolated using an approximate and localized reduced-order model. Motion field estimation based on traditional Horn-Schunck (HS) algorithm suffers from over-smoothing at discontinuities in non-rigid and dissolving texture present in precipitation nowcasting products. An attempt to preserve the discontinuities using an L1 norm formulation in HS led to the use of Total Variation L1 norm (TVL1). In this paper, we propose a radar-based precipitation nowcasting model with TVL1-based estimation of motion field and Sparse Identification of Non-linear Dynamics (SINDy)-based</div><div>estimation of non-linear dynamics. TVL1 is effective in preserving the edges especially in the case of the eye of typhoons and squall lines while estimating motion vectors. SINDy captures the non-linear dynamics and generates the subsequent update values for the motion field based on a reduced-order representation. Finally, the SINDy-generated ensemble of motion field is used along with</div><div>the radar reflectivity image for generating precipitation nowcasts. We evaluated the effectiveness of TVL1 in preserving edges while capturing the motion field from non-rigid surfaces. The performance of the proposed TVL1-SINDy model in nowcasting weather events such as Typhoons and Squall lines are evaluated using performance metrics such as Mean Absolute Error (MAE), and Critical Success Index (CSI). Experimental results show that the proposed nowcasting system demonstrates better performance compared to the benchmark nowcasting models with lower MAE, higher CSI at higher lead times.</div>


2020 ◽  
Vol 148 (12) ◽  
pp. 4971-4994
Author(s):  
McKenna W. Stanford ◽  
Hugh Morrison ◽  
Adam Varble

AbstractThis study investigates impacts of altering subgrid-scale mixing in “convection-permitting” kilometer-scale horizontal-grid-spacing (Δh) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting Model. In quasi-idealized 1-km Δh simulations of two observationally based squall-line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear-inflow jet, and front-to-rear flow of the squall line, and degrades the model’s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall-line mesoscale structure closest to an LES “benchmark” among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km Δh. It generally reduces midlevel vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1- and 2-km Δh compared to 0.5-km Δh. The stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall-line propagation. It also does not affect the model’s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.


1954 ◽  
Vol 35 (7) ◽  
pp. 301-309 ◽  
Author(s):  
William Donn ◽  
Richard Rommer ◽  
Frank Press ◽  
Maurice Ewing

Records from sensitive microbarovariographs installed at Palisades, N. Y., Columbia University in New York City, U. S. Merchant Marine Academy, Kings Point, L. I. have been studied in connection with synoptic and local weather data. A number of interesting pressure events have been noted in connection with the passage of certain synoptic situations, These include pressure pump lines, squall lines, cold fronts and thunderstorms. Low level turbulence or convection associated with certain air masses at certain times is well-recorded by short-period pressure variations. Conclusions regarding the origin of squall lines are drawn from the empirical evidence given.


Sign in / Sign up

Export Citation Format

Share Document