scholarly journals Contribution of gravity waves to universal vertical wavenumber (m^(-3)) spectra revealed by a gravity-wave-permitting general circulation model

2021 ◽  
Author(s):  
Haruka Okui ◽  
Kaoru Sato ◽  
Shingo Watanabe
2016 ◽  
Vol 73 (3) ◽  
pp. 1335-1349 ◽  
Author(s):  
Simon P. Alexander ◽  
Kaoru Sato ◽  
Shingo Watanabe ◽  
Yoshio Kawatani ◽  
Damian J. Murphy

Abstract Southern Hemisphere extratropical gravity wave activity is examined using simulations from a free-running middle-atmosphere general circulation model called Kanto that contains no gravity wave parameterizations. The total absolute gravity wave momentum flux (MF) and its intermittency, diagnosed by the Gini coefficient, are examined during January and July. The MF and intermittency results calculated from the Kanto model agree well with results from satellite limb and superpressure balloon observations. The analysis of the Kanto model simulations indicates the following results. Nonorographic gravity waves are generated in Kanto in the frontal regions of extratropical depressions and around tropopause-level jets. Regions with lower (higher) intermittency in the July midstratosphere become more (less) intermittent by the mesosphere as a result of lower-level wave removal. The gravity wave intermittency is low and nearly homogeneous throughout the SH middle atmosphere during January. This indicates that nonorographic waves dominate at this time of year, with sources including continental convection as well as oceanic depressions. Most of the zonal-mean MF at 40°–65°S in January and July is due to gravity waves located above the oceans. The zonal-mean MF at lower latitudes in both months has a larger contribution from the land regions but the fraction above the oceans remains larger.


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
Puneet Kollipara

Whole-atmosphere general circulation model captures many aspects of mesoscale gravity wave structures—down to the tens of kilometers—and resulting temperatures and tides.


2014 ◽  
Vol 119 (7) ◽  
pp. 5807-5820 ◽  
Author(s):  
Yasunobu Miyoshi ◽  
Hitoshi Fujiwara ◽  
Hidekatsu Jin ◽  
Hiroyuki Shinagawa

2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


Sign in / Sign up

Export Citation Format

Share Document