Spectral absorption of brown carbon in the Central Amazonia

2021 ◽  
Author(s):  
Fernando Morais ◽  
Paulo Artaxo ◽  
Henrique Barbosa ◽  
Marco Aurélio Franco ◽  
Bruna Holanda ◽  
...  
2021 ◽  
Author(s):  
Fernando Morais ◽  
Paulo Artaxo ◽  
Henrique Barbosa ◽  
Marco Aurélio Franco ◽  
Bruna Holanda ◽  
...  

2017 ◽  
Author(s):  
Jorge Saturno ◽  
Bruna A. Holanda ◽  
Christopher Pöhlker ◽  
Florian Ditas ◽  
Qiaoqiao Wang ◽  
...  

Abstract. The Amazon rain forest is considered a very sensitive ecosystem that could be significantly affected by a changing climate. It is still one of the few places on Earth where the atmosphere in the continent approaches near-pristine conditions for some periods of the year. The Amazon Tall Tower Observatory (ATTO) has been built in central Amazonia to monitor the atmospheric and forest ecosystem conditions. The atmospheric conditions at the ATTO site oscillate between biogenic and biomass burning (BB) dominated states. By using a comprehensive ground-based aerosol measurement setup, we studied the physical and chemical properties of aerosol particles at the ATTO site. This paper presents results from 2012 to 2017, with special focus on light absorbing aerosol particles. The aerosol absorption wavelength dependence (expressed as the absorption Ångström exponent, åabs) was usually below 1.0 and increased during the presence of smoke transported from fires in the southern and eastern regions of the Amazon or advected from savanna fires in Africa. In this study, the brown carbon (BrC) contribution to light absorption at 370 nm was obtained by calculating the theoretical wavelength dependence of åabs (WDA). Our calculations resulted in BrC contributions of 17–29 % (25th and 75th percentiles) to total light absorption at 370 nm (σap 370) during the measurement period (2012–2017). The BrC contribution increased up to 27–47 % during fire events occurring under the influence of El Niño, between September and November 2015. An extended time series of ATTO and ZF2 (another Amazon rain forest sampling site) data showed enhanced light scattering and absorption coefficients during El Niño periods in 2009 and 2015. Long-range transport (LRT) aerosol particles that reached the central Amazon Basin from Africa or from southern Amazon exhibited a wide range of black carbon (BC) to carbon monoxide (CO) enhancement ratios (ERBC) (between 4 and 15 ng m−3 ppb−1) reflecting the variability of fuels, combustion phase, and removal processes in the atmosphere. Higher ERBC were measured during the dry season when we observed values up to 15 ng m−3 ppb−1, which were related to the lowest single scattering albedo (ω0) measured during the studied period, (0.86–0.93). A parameterization of åabs as a function of the BC to OA mass ratio was investigated and was found applicable to tropical forest emissions but further investigation is required, especially by segregating fuel types. Additionally, important enhancements of the BC mass absorption cross‑section (αabs) were found over the measurement period. This enhancement could be linked to heavy coating of the BC aerosol particles. In the future, the BC mixing state should be systematically investigated by using different instrumental approaches.


2018 ◽  
Vol 18 (17) ◽  
pp. 12817-12843 ◽  
Author(s):  
Jorge Saturno ◽  
Bruna A. Holanda ◽  
Christopher Pöhlker ◽  
Florian Ditas ◽  
Qiaoqiao Wang ◽  
...  

Abstract. The Amazon rainforest is a sensitive ecosystem experiencing the combined pressures of progressing deforestation and climate change. Its atmospheric conditions oscillate between biogenic and biomass burning (BB) dominated states. The Amazon further represents one of the few remaining continental places where the atmosphere approaches pristine conditions during occasional wet season episodes. The Amazon Tall Tower Observatory (ATTO) has been established in central Amazonia to investigate the complex interactions between the rainforest ecosystem and the atmosphere. Physical and chemical aerosol properties have been analyzed continuously since 2012. This paper provides an in-depth analysis of the aerosol's optical properties at ATTO based on data from 2012 to 2017. The following key results have been obtained. The aerosol scattering and absorption coefficients at 637 nm, σsp,637 and σap,637, show a pronounced seasonality with lowest values in the clean wet season (mean ± SD: σsp,637=7.5±9.3 M m−1; σap,637=0.68±0.91 M m−1) and highest values in the BB-polluted dry season (σsp,637=33±25 M m−1; σap,637=4.0±2.2 M m−1). The single scattering albedo at 637 nm, ω0, is lowest during the dry season (ω0=0.87±0.03) and highest during the wet season (ω0=0.93±0.04). The retrieved BC mass absorption cross sections, αabs, are substantially higher than values widely used in the literature (i.e., 6.6 m2 g−1 at 637 nm wavelength), likely related to thick organic or inorganic coatings on the BC cores. Wet season values of αabs=11.4±1.2 m2 g−1 (637 nm) and dry season values of αabs=12.3±1.3 m2 g−1 (637 nm) were obtained. The BB aerosol during the dry season is a mixture of rather fresh smoke from local fires, somewhat aged smoke from regional fires, and strongly aged smoke from African fires. The African influence appears to be substantial, with its maximum from August to October. The interplay of African vs. South American BB emissions determines the aerosol optical properties (e.g., the fractions of black vs. brown carbon, BC vs. BrC). By analyzing the diel cycles, it was found that particles from elevated aerosol-rich layers are mixed down to the canopy level in the early morning and particle number concentrations decrease towards the end of the day. Brown carbon absorption at 370 nm, σap,BrC,370, was found to decrease earlier in the day, likely due to photo-oxidative processes. BC-to-CO enhancement ratios, ERBC, reflect the variability of burnt fuels, combustion phases, and atmospheric removal processes. A wide range of ERBC between 4 and 15 ng m−3 ppb−1 was observed with higher values during the dry season, corresponding to the lowest ω0 levels (0.86–0.93). The influence of the 2009/2010 and 2015/2016 El Niño periods and the associated increased fire activity on aerosol optical properties was analyzed by means of 9-year σsp and σap time series (combination of ATTO and ZF2 data). Significant El Niño-related enhancements were observed: in the dry season, σsp,637 increased from 24±18 to 48±33 M m−1 and σap, 637 from 3.8±2.8 to 5.3±2.5 M m−1. The absorption Ångström exponent, åabs, representing the aerosol absorption wavelength dependence, was mostly <1.0 with episodic increases upon smoke advection. A parameterization of åabs as a function of the BC-to-OA mass ratio for Amazonian aerosol ambient measurements is presented. The brown carbon (BrC) contribution to σap at 370 nm was obtained by calculating the theoretical BC åabs, resulting in BrC contributions of 17 %–29 % (25th and 75th percentiles) to σap 370 for the entire measurement period. The BrC contribution increased to 27 %–47 % during fire events under El Niño-related drought conditions from September to November 2015. The results presented here may serve as a basis to understand Amazonian atmospheric aerosols in terms of their interactions with solar radiation and the physical and chemical-aging processes that they undergo during transport. Additionally, the analyzed aerosol properties during the last two El Niño periods in 2009/2010 and 2015/2016 offer insights that could help to assess the climate change-related potential for forest-dieback feedbacks under warmer and drier conditions.


Author(s):  
D.G. Kaskaoutis ◽  
G. Grivas ◽  
I. Stavroulas ◽  
A. Bougiatioti ◽  
E. Liakakou ◽  
...  

Author(s):  
Jorge Saturno ◽  
Bruna A. Holanda ◽  
Christopher Pöhlker ◽  
Florian Ditas ◽  
Qiaoqiao Wang ◽  
...  

Author(s):  
Rawad Saleh ◽  
Marguerite Marks ◽  
Jinhyok Heo ◽  
Peter J. Adams ◽  
Neil M. Donahue ◽  
...  

Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


Brittonia ◽  
2021 ◽  
Author(s):  
Caroline da Cruz Vasconcelos ◽  
Isolde Dorothea Kossmann Ferraz ◽  
Marisabel Ureta Adrianzén ◽  
José Luís Campana Camargo ◽  
Mário Henrique Terra-Araujo

Sign in / Sign up

Export Citation Format

Share Document