scholarly journals Basement topography and sediment thickness beneath Antarctica's Ross Ice Shelf imaged with airborne magnetic data

2021 ◽  
Author(s):  
Matthew Davis Tankersley ◽  
Huw Joseph Horgan ◽  
Christine Smith Siddoway ◽  
Fabio Caratori Tontini ◽  
Kirsteen Jane Tinto
2020 ◽  
Vol 31 (64) ◽  
pp. 1
Author(s):  
Polina Lemenkova

Detailed mapping based on the high-resolution grids, such as GEBCO, ETOPO1, GlobSed, EGM-2008 is crucial for various domains of Earth sciences: geophysics, glaciology, Quaternary, sedimentology, geology, environmental science, geomorphology, etc. The study presented a GMT-based scripting techniques of the cartographic data processing aimed at the comparative analysis of the bathymetry, sediment thickness, geologic objects and geophysical settings in the study area based on various datasets. The study area is located in the Ross Sea, Antarctic. The highest values of the sediment thickness over 7,500 m are dominating in the southwest segment of the Ross Sea closer to the Victoria Land, followed by the region over the Ross Ice Shelf with values between 5,500 to 7,000 m (170°-175°W). The increased sediment thickness (2,500 to 3,000 m) was also mapped seen in the region NE off the Sulzberger Bay (70-75°S to 140-155°W), caused by the closeness of the Marie Bird Land ice coasts. A remarkable correlation between the gravity and the topography of the sea-land border in the Marie Bird Land area is well reflected in the coastal line and a set of the higher values in the free-air gravity. On the contrary, negative values (–60 to -80 mGal) are notable along the submarine toughs stretching parallel in the western part of the basin: e.g. the trough stretching in NW-SE direction in the 170°W-175°E, 65°S-68°S, between the 167°W-175°W, 70°S-72°S. Such correlations are clearly visible on the map, indicating geological lineaments and bathymetric depressions correlating with gravity grids. The paper contributes to the regional studies of the Ross Sea, the Antarctic and Polar region, and development of the cartographic technical methodologies by presenting an application of the GMT for thematic mapping.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 155
Author(s):  
Fiorenza Torricella ◽  
Romana Melis ◽  
Elisa Malinverno ◽  
Giorgio Fontolan ◽  
Mauro Bussi ◽  
...  

The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


Eos ◽  
2012 ◽  
Vol 93 (27) ◽  
pp. 256-256
Author(s):  
Colin Schultz

Nature ◽  
1979 ◽  
Vol 282 (5740) ◽  
pp. 703-705 ◽  
Author(s):  
Douglas R. MacAyeal ◽  
Robert H. Thomas
Keyword(s):  

2016 ◽  
Vol 43 (1) ◽  
pp. 250-255 ◽  
Author(s):  
Oliver J. Marsh ◽  
Helen A. Fricker ◽  
Matthew R. Siegfried ◽  
Knut Christianson ◽  
Keith W. Nicholls ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document