Predictive control strategy to improve stability of DFIG-based wind generation connected to a large-scale power system

2016 ◽  
Vol 27 (5) ◽  
pp. e2300 ◽  
Author(s):  
Mohsen Darabian ◽  
Abolfazl Jalilvand
Author(s):  
Haopeng Zhang ◽  
Qing Hui

Model predictive control (MPC) is a heuristic control strategy to find a consequence of best controllers during each finite-horizon regarding to certain performance functions of a dynamic system. MPC involves two main operations: estimation and optimization. Due to high complexity of the performance functions, such as, nonlinear, non-convex, large-scale objective functions, the optimization algorithms for MPC must be capable of handling those problems with both computational efficiency and accuracy. Multiagent coordination optimization (MCO) is a recently developed heuristic algorithm by embedding multiagent coordination into swarm intelligence to accelerate the searching process for the optimal solution in the particle swarm optimization (PSO) algorithm. With only some elementary operations, the MCO algorithm can obtain the best solution extremely fast, which is especially necessary to solve the online optimization problems in MPC. Therefore, in this paper, we propose an MCO based MPC strategy to enhance the performance of the MPC controllers when addressing non-convex large-scale nonlinear problems. Moreover, as an application, the network resource balanced allocation problem is numerically illustrated by the MCO based MPC strategy.


Author(s):  
Jaehyeong Lee ◽  
Sungchul Hwang ◽  
Soseul Jung ◽  
Gilsoo Jang ◽  
Seungmin Jung ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1995 ◽  
Author(s):  
Peng Shen ◽  
Lin Guan ◽  
Zhenlin Huang ◽  
Liang Wu ◽  
Zetao Jiang

This paper proposes an active-current control strategy for large-scale wind turbines (WTs) to improve the transient stability of power systems based on a perturbation estimation (PE) approach. The main idea of this control strategy is to mitigate the generator imbalance of mechanical and electrical powers by controlling the active-current of WTs. The effective mutual couplings of synchronous generators and WTs are identified using a Kron-reduction technique first. Then, the control object of each WT is assigned based on the identified mutual couplings. Finally, an individual controller is developed for each WT using a PE approach. In the control algorithm, a perturbation state (PS) is introduced for each WT to represent the comprehensive effect of the nonlinearities and parameter variations of the power system, and then it is estimated by a designed perturbation observer. The estimated PS is employed to compensate the actual perturbation, and to finally achieve the adaptive control design without requiring an accurate system model. The effectiveness of the proposed control approach on improving the system transient stability is validated in the modified IEEE 39-bus system.


Sign in / Sign up

Export Citation Format

Share Document