scholarly journals Power consumption model for macrocell and microcell base stations

2012 ◽  
Vol 25 (3) ◽  
pp. 320-333 ◽  
Author(s):  
Margot Deruyck ◽  
Wout Joseph ◽  
Luc Martens
2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Albert Ayang ◽  
Paul-Salomon Ngohe-Ekam ◽  
Bossou Videme ◽  
Jean Temga

In this paper, the work consists of categorizing telecommunication base stations (BTS) for the Sahel area of Cameroon according to their power consumption per month. It consists also of proposing a model of a power consumption and finally proceeding to energy audits in each type of base station in order to outline the possibilities of realizing energy savings. Three types of telecommunication base stations (BTS) are found in the Sahel area of Cameroon. The energy model takes into account power consumption of all equipment located in base stations (BTS). The energy audits showed that mismanagement of lighting systems, and of air-conditioning systems, and the type of buildings increased the power consumption of the base station. By applying energy savings techniques proposed for base stations (BTS) in the Sahel zone, up to 17% of energy savings are realized in CRTV base stations, approximately 24.4% of energy are realized in the base station of Missinguileo, and approximately 14.5% of energy savings are realized in the base station of Maroua market.


2013 ◽  
Vol 24 (6) ◽  
pp. 615-632 ◽  
Author(s):  
Bjoern Dusza ◽  
Christoph Ide ◽  
Liang Cheng ◽  
Christian Wietfeld

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1372
Author(s):  
Liang Zhang ◽  
Jongwon Kim ◽  
Jie Sun

Four-wheel Mecanum mobile robots (FWMRs) are widely used in transportation because of their omnidirectional mobility. However, the FWMR trades off energy efficiency for flexibility. To efficiently predict the energy consumption of the robot movement processes, this paper proposes a power consumption model for the omnidirectional movement of an FWMR. A power consumption model is of great significance for reducing the power consumption, motion control, and path planning of robots. However, FWMRs are highly maneuverable, meaning their control is complicated and their energy modeling is extremely complex. The speed, distance, path, and power consumption of the robot can vary greatly depending on the control method. This energy model was mathematically implemented in MATLAB and validated by our laboratory’s Mecanum wheel robot. The prediction accuracy of the model was over 95% through simulation and experimental verification.


Sign in / Sign up

Export Citation Format

Share Document